强化学习详解:理论基础与核心算法解析

news2024/11/15 20:43:11

本文详细介绍了强化学习的基础知识和基本算法,包括动态规划、蒙特卡洛方法和时序差分学习,解析了其核心概念、算法步骤及实现细节。

关注TechLead,复旦AI博士,分享AI领域全维度知识与研究。拥有10+年AI领域研究经验、复旦机器人智能实验室成员,国家级大学生赛事评审专家,发表多篇SCI核心期刊学术论文,上亿营收AI产品研发负责人。

file

一、导论

强化学习(Reinforcement Learning, RL)是机器学习中的一个重要分支,其目标是通过与环境的交互来学习决策策略,以最大化长期累积奖励。在强化学习中,智能体(agent)通过执行一系列动作来影响环境,从而获得反馈信号,即奖励(reward)。这种学习机制模仿了生物体在自然界中的学习过程,因此具有很强的现实意义和应用前景。

强化学习已经在多个领域展示了其强大的能力,以下是几个典型的应用场景:

游戏中的强化学习

游戏是强化学习的一个重要应用领域,特别是在复杂的策略游戏中,RL算法已经取得了显著的成功。例如,AlphaGo利用深度强化学习和蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS)技术,在围棋比赛中击败了世界顶级棋手。此外,DQN(Deep Q-Network)在 Atari 游戏中的表现也证明了强化学习在复杂策略环境中的潜力。

自动驾驶

自动驾驶汽车需要在复杂的交通环境中做出实时决策,强化学习在这一领域具有重要的应用价值。通过不断与模拟环境交互,RL算法可以学习如何处理各种驾驶场景,包括避障、变道和停车等,从而提高自动驾驶系统的安全性和效率。

机器人控制

机器人控制是另一个重要的应用领域,强化学习可以帮助机器人在未知或动态环境中自主学习如何完成任务。例如,通过RL算法,机器人可以学会行走、抓取物体、组装零件等任务,这为实现高效灵活的机器人系统提供了新的途径。

二、基础知识

在理解强化学习的高级算法和应用之前,我们需要掌握其基础知识。基础知识部分将详细介绍强化学习的定义和关键术语、马尔可夫决策过程(MDP)的数学框架,以及策略与价值函数的定义和区别。这些概念是理解和应用强化学习的基石。

2.1 强化学习的定义和关键术语

强化学习(Reinforcement Learning, RL)是一种通过与环境交互来学习策略的机器学习方法。智能体(agent)在环境(environment)中执行动作(action),从而改变环境的状态(state)并获取奖励(reward)。智能体的目标是通过学习策略(policy),在不同状态下选择最佳动作,以最大化累积奖励。

2.1.1 关键术语

  • 智能体(Agent): 在环境中执行动作并学习策略的主体。
  • 环境(Environment): 智能体所处的外部系统,智能体的动作会影响环境的状态。
  • 状态(State, S): 环境在某一时刻的描述,通常由一组变量表示。
  • 动作(Action, A): 智能体在特定状态下可以执行的行为。
  • 奖励(Reward, R): 环境对智能体动作的反馈信号,表示动作的好坏。
  • 策略(Policy, π): 指导智能体在各个状态下选择动作的规则,可以是确定性的(π(s) = a)或随机的(π(a|s) = P(a|s))。
  • 价值函数(Value Function, V): 用来估计智能体在某个状态或状态-动作对下的长期回报。
  • 动作价值函数(Action-Value Function, Q): 用来估计智能体在某个状态下执行某个动作后的长期回报。

2.2 马尔可夫决策过程(MDP)

马尔可夫决策过程(Markov Decision Process, MDP)是强化学习问题的数学框架。MDP通过五元组 (S, A, P, R, γ) 来描述,其中:

  • S: 状态空间,表示所有可能状态的集合。
  • A: 动作空间,表示智能体可以执行的所有动作的集合。
  • P: 状态转移概率矩阵,P(s’|s,a) 表示在状态 s 执行动作 a 后转移到状态 s’ 的概率。
  • R: 奖励函数,R(s,a) 表示在状态 s 执行动作 a 后获得的即时奖励。
  • γ: 折扣因子,0 ≤ γ ≤ 1,用于度量未来奖励的当前价值。

2.2.1 MDP的性质

MDP具有马尔可夫性质,即当前状态的转移只依赖于当前状态和当前动作,而与之前的状态无关。这一性质简化了强化学习问题的求解,使得智能体可以通过递推方式计算最优策略和价值函数。

2.2.2 状态转移与奖励

状态转移和奖励是MDP的核心,决定了智能体与环境的交互方式。状态转移概率矩阵 P 定义了环境的动态行为,而奖励函数 R 则评估了智能体动作的效果。通过不断试验和观察,智能体可以逐渐学会如何在不同状态下选择动作,以实现长期回报的最大化。

2.3 策略与价值函数

策略(Policy)和价值函数(Value Function)是强化学习中的两个关键概念,它们分别描述了智能体的行为规则和状态的价值评估。

2.3.1 策略(Policy, π)

策略 π 定义了智能体在每个状态下选择动作的规则。策略可以是确定性的,也可以是随机的。确定性策略 π(s) = a 表示在状态 s 下总是选择动作 a,而随机策略 π(a|s) = P(a|s) 则表示在状态 s 下以概率 P(a|s) 选择动作 a。

策略的目标是指导智能体选择最优动作,从而最大化累积奖励。学习最优策略是强化学习的核心任务之一。

2.3.2 价值函数(Value Function, V)

价值函数 V 用来估计某个状态或状态-动作对的长期回报。价值函数的定义有两种形式:
file

2.3.3 贝尔曼方程

file

贝尔曼方程提供了计算价值函数的递归公式,是求解最优策略和价值函数的基础。

三、基本算法

强化学习中,算法的设计和实现是智能体能够学习和优化策略的关键。基本算法包括动态规划(Dynamic Programming, DP)、蒙特卡洛方法(Monte Carlo Methods)和时序差分(Temporal-Difference, TD)学习。这些算法各有特点,适用于不同的场景和问题。

3.1 动态规划(Dynamic Programming, DP)

动态规划是一种通过递推方式求解优化问题的算法。在强化学习中,动态规划用于计算最优策略和价值函数。动态规划的前提是模型已知,即环境的状态转移概率和奖励函数是已知的。

3.1.1 价值迭代(Value Iteration)

价值迭代是一种通过不断更新价值函数来逼近最优价值函数的方法。其核心思想是利用贝尔曼最优方程递归地更新状态价值函数,直到收敛。

算法步骤:
file

代码示例:

import numpy as np

def value_iteration(P, R, gamma, theta):
    V = np.zeros(len(P))
    while True:
        delta = 0
        for s in range(len(P)):
            v = V[s]
            V[s] = max(sum([P[s][a][s'] * (R[s][a] + gamma * V[s']) for s' in range(len(P))]) for a in range(len(P[s])))
            delta = max(delta, abs(v - V[s]))
        if delta < theta:
            break
    policy = np.zeros(len(P), dtype=int)
    for s in range(len(P)):
        policy[s] = np.argmax([sum([P[s][a][s'] * (R[s][a] + gamma * V[s']) for s' in range(len(P))]) for a in range(len(P[s]))])
    return V, policy

# 示例用法
P = [[[0.8, 0.2], [0.1, 0.9]], [[0.7, 0.3], [0.2, 0.8]]]
R = [[1, 0], [0, 1]]
gamma = 0.9
theta = 1e-6
V, policy = value_iteration(P, R, gamma, theta)
print("Value Function:", V)
print("Policy:", policy)

3.1.2 策略迭代(Policy Iteration)

策略迭代通过交替进行策略评估和策略改进来找到最优策略。其核心思想是基于当前策略计算价值函数,然后改进策略,直到策略不再改变。

算法步骤:
file

代码示例:

def policy_iteration(P, R, gamma, theta):
    policy = np.zeros(len(P), dtype=int)
    V = np.zeros(len(P))
    
    def policy_evaluation(policy):
        while True:
            delta = 0
            for s in range(len(P)):
                v = V[s]
                a = policy[s]
                V[s] = sum([P[s][a][s'] * (R[s][a] + gamma * V[s']) for s' in range(len(P))])
                delta = max(delta, abs(v - V[s]))
            if delta < theta:
                break

    while True:
        policy_stable = True
        policy_evaluation(policy)
        
        for s in range(len(P)):
            old_action = policy[s]
            policy[s] = np.argmax([sum([P[s][a][s'] * (R[s][a] + gamma * V[s']) for s' in range(len(P))]) for a in range(len(P[s]))])
            if old_action != policy[s]:
                policy_stable = False
        if policy_stable:
            break

    return V, policy

# 示例用法
V, policy = policy_iteration(P, R, gamma, theta)
print("Value Function:", V)
print("Policy:", policy)

3.2 蒙特卡洛方法(Monte Carlo Methods)

蒙特卡洛方法是一种基于随机采样的强化学习方法。它通过多次模拟智能体与环境的交互过程,来估计状态价值或动作价值。与动态规划不同,蒙特卡洛方法不需要已知的环境模型,因此适用于模型未知的情况。

3.2.1 首访蒙特卡洛(First-Visit Monte Carlo)

首访蒙特卡洛方法通过记录智能体在每个状态第一次访问时的回报,来估计状态价值函数。具体步骤如下:

算法步骤:
file

代码示例:

def first_visit_mc(env, num_episodes, gamma):
    V = np.zeros(env.observation_space.n)
    N = np.zeros(env.observation_space.n)

    for _ in range(num_episodes):
        state = env.reset()
        trajectory = []
        done = False
        while not done:
            action = env.action_space.sample()
            next_state, reward, done, _ = env.step(action)
            trajectory.append((state, action, reward))
            state = next_state
        
        visited_states = set()
        G = 0
        for state, action, reward in reversed(trajectory):
            G = reward + gamma * G
            if state not in visited_states:
                visited_states.add(state)
                N[state] += 1
                V[state] += (G - V[state]) / N[state]
                
    return V

# 示例用法
import gym
env = gym.make('FrozenLake-v1')
num_episodes = 5000
gamma = 0.9
V = first_visit_mc(env, num_episodes, gamma)
print("Value Function:", V)

3.2.2 每次访问蒙特卡洛(Every-Visit Monte Carlo)

每次访问蒙特卡洛方法通过记录智能体在每个状态每次访问时的回报,来估计状态价值函数。具体步骤如下:

算法步骤:

file

代码示例:

def every_visit_mc(env, num_episodes, gamma):
    V = np.zeros(env.observation_space.n)
    N = np.zeros(env.observation_space.n)

    for _ in range(num_episodes):
        state = env.reset()
        trajectory = []
        done = False
        while not done:
            action = env.action_space.sample()
            next_state, reward, done, _ = env.step(action)
            trajectory.append((state, action, reward))
            state = next_state
        
        G = 0
        for state, action, reward in reversed(trajectory):
            G = reward + gamma * G
            N[state] += 1
            V[state] += (G - V[state]) / N[state]
                
    return V

# 示例用法
V = every_visit_mc(env, num_episodes, gamma)
print("Value Function:", V)

3.3 时序差分(Temporal-Difference, TD)学习

时序差分学习结合了蒙特卡洛方法和动态规划的优点。它既不需要完整的轨迹,也不需要已知的环境模型,通过每一步的经验更新价值函数。

3.3.1 SARSA(State-Action-Reward-State-Action)

SARSA 是一种基于策略的 TD 学习算法,其名称代表了五元组 ((S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}))。SARSA 通过每一步的经验更新动作价值函数。

算法步骤:

file

代码示例:

def sarsa(env, num_episodes, alpha, gamma, epsilon):
    Q = np.zeros((env.observation_space.n, env.action_space.n))

    def epsilon_greedy_policy(state):
        if np.random.rand() < epsilon:
            return np.random.choice(env.action_space.n)
        else:
            return np.argmax(Q[state])

    for _ in range(num_episodes):
        state = env.reset()
        action = epsilon_greedy_policy(state)
        done = False
        while not done:
            next_state, reward, done, _ = env.step(action)
            next_action = epsilon_greedy_policy(next_state)
            Q[state, action] += alpha * (reward + gamma * Q[next_state, next_action] - Q[state, action])
            state, action = next_state, next_action
            
    return Q

# 示例用法
alpha = 0.1
Q = sarsa(env, num_episodes, alpha, gamma, epsilon)
print("Q-Value Function:", Q)

3.3.2 Q学习(Q-Learning)

Q学习是一种无策略的 TD 学习算法,其目标是直接逼近最优动作价值函数。Q学习通过每一步的经验更新 Q 值函数,但不同于 SARSA,Q学习使用最大化未来 Q 值的动作来更新当前 Q 值。

算法步骤:

file

代码示例:

def q_learning(env, num_episodes, alpha, gamma, epsilon):
    Q = np.zeros((env.observation_space.n, env.action_space.n))

    def epsilon_greedy_policy(state):
        if np.random.rand() < epsilon:
            return np.random.choice(env.action_space.n)
        else:
            return np.argmax(Q[state])

    for _ in range(num_episodes):
        state = env.reset()
        done = False
        while not done:
            action = epsilon_greedy_policy(state)
            next_state, reward, done, _ = env.step(action)
            Q[state, action] += alpha * (reward + gamma * np.max(Q[next_state]) - Q[state, action])
            state = next_state
            
    return Q

# 示例用法
Q = q_learning(env, num_episodes, alpha, gamma, epsilon)
print("Q-Value Function:", Q)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1868526.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【漏洞复现】用友GRP-U8——SQL注入

声明&#xff1a;本文档或演示材料仅供教育和教学目的使用&#xff0c;任何个人或组织使用本文档中的信息进行非法活动&#xff0c;均与本文档的作者或发布者无关。 文章目录 漏洞描述漏洞复现测试工具 漏洞描述 用友GRP-U8是一款企业管理软件&#xff0c;其系统dialog_moreUs…

客户案例|某 SaaS 企业租户敏感数据保护实践

近年来&#xff0c;随着云计算技术的快速发展&#xff0c;软件即服务&#xff08;SaaS&#xff09;在各行业的应用逐渐增多&#xff0c;SaaS 应用给企业数字化发展带来了便捷性、成本效益与可访问性&#xff0c;同时也带来了一系列数据安全风险。作为 SaaS 产品运营服务商&…

活动|华院计算受邀参加2024全球人工智能技术大会(GAITC),探讨法律大模型如何赋能社会治理

6月22至23日&#xff0c;备受瞩目的2024全球人工智能技术大会&#xff08;GAITC&#xff09;在杭州市余杭区未来科技城隆重举行。本届大会以“交叉、融合、相生、共赢”为主题&#xff0c;集“会、展、赛”为一体&#xff0c;聚“产、学、研”于一堂。值得一提的是&#xff0c;…

论文速览 | IEEE Signal Processing Letters, 2024 | 基于时空上下文学习的事件相机立体深度估计

论文速览 | IEEE Signal Processing Letters, 2024 | 基于时空上下文学习的事件相机立体深度估计 1 引言 在计算机视觉领域,立体深度估计一直是一个备受关注的研究热点。传统的基于帧的方法虽然取得了长足的进步,但在处理运动模糊、低照度和平坦区域等挑战性场景时仍面临诸多…

203. 移除链表元素【链表】【C++】

题目描述 题目描述 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新的头节点 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,6,3,4,5,6], val 6 输出&#xff1a;[1,2,3,4,5] 示例 2&#x…

RabbitMQ的Direct交换机

Direct交换机 BindingKey 在Fanout模式中&#xff0c;一条消息&#xff0c;会被所有订阅的队列都消费。但是&#xff0c;在某些场景下&#xff0c;我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。 在Direct模型下&#xff1a; 队列与交换机的绑定&a…

爬虫是什么?

目录 1.什么是互联网爬虫&#xff1f; 2.爬虫核心? 3.爬虫的用途? 4.爬虫分类&#xff1f; 5.反爬手段&#xff1f; 1.什么是互联网爬虫&#xff1f; 如果我们把互联网比作一张大的蜘蛛网&#xff0c;那一台计算机上的数据便是蜘蛛网上的一个猎物&#xff0c;而爬虫程序…

【vue3】【vant】 移动端中国传统文化和民间传说案例

更多项目点击&#x1f446;&#x1f446;&#x1f446;完整项目成品专栏 【vue3】【vant】 移动端中国传统文化和民间传说案例 获取源码方式项目说明&#xff1a;其中功能包括项目包含&#xff1a;项目运行环境运行截图和视频 获取源码方式 加Q群&#xff1a;632562109项目说…

APP 自动化测试框架如何设计?

自动化测试框架是为了增强测试效率和准确性而设计的工具。它可以帮助开发人员和测试人员在软件开发周期中自动执行各种测试任务。在本文中&#xff0c;我们将从零开始详细介绍如何设计一个自动化测试框架。 1. 确定测试需求&#xff1a; 在设计测试框架之前&#xff0c;首先需…

本安防爆手机为什么能在石油化工行业使用

本安防爆手机专为石油化工行业等易燃易爆环境设计&#xff0c;具备严格的防爆安全标准和环境适应性&#xff0c;确保在石油化工厂的作业安全使用。这些手机不仅具备普通手机的通讯功能&#xff0c;更能有效防止电火花等潜在点火源的产生&#xff0c;为石油化工工作人员提供可靠…

Todesk远程连接Ubuntu卡100%,以及小窗口打不开

Todesk远程连接Ubuntu卡100%&#xff0c;以及小窗口打不开 使用Todesk远程连接Ubuntu一直卡100%进不去还有todesk里的小悬浮窗打开就会小时&#xff08;小下拉框会消失&#xff09; 使用Todesk远程连接Ubuntu一直卡100%进不去 还有todesk里的小悬浮窗打开就会小时&#xff08;小…

使用 Java Swing 和 XChart 创建多种图表

在现代应用程序开发中&#xff0c;数据可视化是一个关键部分。本文将介绍如何使用 Java Swing 和 XChart 库创建各种类型的图表。XChart 是一个轻量级的图表库&#xff0c;支持多种类型的图表&#xff0c;非常适合在 Java 应用中进行快速的图表绘制。 1、环境配置 在开始之前&…

Web应用安全测试-专项漏洞(一)

Web应用安全测试-专项漏洞&#xff08;一&#xff09; 专项漏洞部分注重测试方法论&#xff0c;每个专项仅列举一个例子。实际测试过程中&#xff0c;需视情况而定。 文章目录 Web应用安全测试-专项漏洞&#xff08;一&#xff09;Web组件&#xff08;SSL/WebDAV&#xff09;漏…

AI职场调研 - 被AI替代的工作分析报告

研究背景 随着人工智能(AI)技术的快速发展&#xff0c;其在职场中的应用日益广泛&#xff0c;引发了对工作被AI替代的担忧。本研究旨在分析在自由职业市场中&#xff0c;哪些工作更有可能被AI替代&#xff0c;并探讨AI对工作市场的实际影响。 研究目标 识别最有可能被AI替代…

DevExpress Office File API教程 - 如何使用AI服务增强Word文档可访问性和语言支持?

DevExpress Office File API是一个专为C#, VB.NET 和 ASP.NET等开发人员提供的非可视化.NET库。有了这个库&#xff0c;不用安装Microsoft Office&#xff0c;就可以完全自动处理Excel、Word等文档。开发人员使用一个非常易于操作的API就可以生成XLS, XLSx, DOC, DOCx, RTF, CS…

不会还有人没有用过git rebase合并分支吧?一文详解git merge与git rebase区别

文章目录 什么是git merge&#xff1f;使用git merge的场景git merge的示例 什么是git rebase&#xff1f;使用git rebase的场景git rebase的示例 git merge与git rebase的区别如何选择git merge和git rebase&#xff1f;结论 &#x1f389;欢迎来到Java学习路线专栏~探索Java中…

技术流 | 运维平台大型“生产事故”录播和实战重现

【本文作者&#xff1a;擎创科技 资深专家禹鼎侯】 本文写于2021年&#xff0c;最近重读觉得特别有现场感。这也是运维人面对生产环境时遇到的各种惊心动魄的事件之一。惊险&#xff0c;但又顺利解决。是最好的结果。 事情是酱紫的。 那天上午&#xff0c;轻轻松松完成了一个新…

自媒体内容创作者必备:ChatGPT助你提升文章质量

随着自媒体的迅猛发展&#xff0c;越来越多的人加入到内容创作的行列。然而&#xff0c;要在这个竞争激烈的领域脱颖而出&#xff0c;不仅需要创意和独特的观点&#xff0c;更需要高质量的文章内容。在这方面&#xff0c;ChatGPT作为一个智能写作助手&#xff0c;能够帮助自媒体…

第三届仿真模拟、电子信息科学与技术国际学术会议(SMEI 2024,8月02-04)

随着仿真模拟技术的成熟和进步&#xff0c;仿真模拟技术越来越广泛地应用于工业工程、管理科学、社会经济、交通运输、生态环境、军事装备等各个科学领域&#xff0c;并深刻影响着信息技术和信息产业的发展。围绕仿真模拟、电子信息科学与技术等方面内容&#xff0c;为更好地促…

昇思25天学习打卡营第4天|MindSpore快速入门-FCN图像语义分割

FCN图像语义分割 全卷积网络&#xff08;Fully Convolutional Networks&#xff0c;FCN&#xff09;是UC Berkeley的Jonathan Long等人于2015年在Fully Convolutional Networks for Semantic Segmentation[1]一文中提出的用于图像语义分割的一种框架。 FCN是首个端到端&#…