【深度强化学习】如何使用多进程(multiprocessing、pipe)来加速训练

news2025/1/11 22:44:47

文章目录

  • 实验结果
  • 实现思路
    • 思路1
    • 思路2
  • 进程与线程介绍
  • 如何实现
    • multiprocessing、Pipe的范例
    • 关于时间对比上的问题
    • 代码修改
    • 收敛为何不稳定
  • 技巧
    • 进程资源抢占问题
    • 线程问题
    • cpu和gpu问题
  • 进阶(还没看懂/还没实验)
  • 附代码
    • raw代码
    • mul代码


实验结果

实验平台:cpu:i7-10870 8核16线程(intel处理器采用超线程技术,一个核心有两个线程,故物理上是8核,逻辑核心是16核)
pytorch 版本:2.2.2+cu121
numpy 版本:1.24.3
gym 版本:0.26.2
模块:

from torch.multiprocessing import Process, Pipe #这两个结果一致,第一种继承了第二个使得可以应用在GPU上
#from multiprocessing import Process, Pipe

在这里插入图片描述
最后一行为 未使用多进程加速的原始代码。前面几行的进程数为 number/10。
实验结果表明:进程数为cpu物理核心数一半的时候最佳,我是8核,这里实验结果也是4进程的最佳,快了两倍,不过二进程的可能更稳定点,快了1.6倍。其他进程数就不稳定了。

推荐进程数为:物理核心数的一半

以下为8进程时 不稳定展示:
在这里插入图片描述
以下为4进程时 稳定性展示:
在这里插入图片描述

参考:
1、github代码(参考并修改了这里代码)
2、DPPO深度强化学习算法实现思路(分布式多进程加速)(这里参考了思路2)
3、在Python中优雅地用多进程(->1、这里说明使用Pipe技术运行更快,2、默认为multiprocessing.set_start_method('spawn')好)
4、pytorch模型在multiprocessing下前馈速度明显降低的原因是什么?(->解决了进程中资源抢占的问题)

实现思路

思路1

对于参考2的实现思路1,我感觉作者只是在训练过程中,用了多个进程训练,并在训练后取了平均,也就是说本来是由一个进程训练,现在是多个进程同时训练,两者都在同一个时间线内,并没有起到加速效果,可以说只是起到了平稳训练的作用。(以下为参考2的作者思路1)
在这里插入图片描述
在作者的后续实验也表明,确实是这样的效果
在这里插入图片描述
其作者的本来想法,我猜测意思是:在训练的时候利用多进程加速。但是训练的时候用的是同一个网络,无法做到在更新完这个网络的同时发送这个网络给训练前的时间点。于是作废。

思路2

这里的实现思路和这里的参考2的思路2本质上是一样的,也是常见的一种思路。

即,在环境采样中使用多进程采样,在训练中单进程更新(训练)。

比方说,在同一时间线内,4个进程同时采样,这样就是同样的时间采样了4条episode,然后在更新时依旧是单条更新。也就是说更新的次数不变,时间不变,且采样次数不变,但采样时间减少了4倍。(由于更新的时间没有减少4倍,所以理论上比原先的速度快1-4倍)

也可以叫做DPPO,D为distributed,分布式的意思,也意为这里的分布式采样。
类似的思想如:A3C

进程与线程介绍

进程:相当于电脑多开了很多应用。
线程:相当于一个应用里,比方说:一个网页浏览器里有一个线程负责渲染页面,另一个线程负责处理用户输入,还有一个线程负责下载文件。这些线程在同一个进程内协作,共同完成浏览器的功能。
在这里插入图片描述
比方说上图的VScode是32进程,

在这里插入图片描述
这里显示每个进程里有多少个线程,如上图第一个code进程有32个线程。(设置方法见:任务管理器查看线程数、PID值等方法)

了解到此,我们可以了解到上述线程和平时电脑上所说的8核16线程中的线程所区分开,第二个线程说的可以看作逻辑核心数。

实际效果:我这里开了4个进程。看下面python.exe,上面4个为子进程均有34个线程,第5个为主进程,有45个线程。
在这里插入图片描述
而原始单进程的话,只有一个进程,这也就解释了为什么多进程会比单进程快的原因。(上述PID = Process ID 进程标识)

如何实现

multiprocessing、Pipe的范例

创建一个子进程、一个管道

## study multiprocessing pipe

from torch.multiprocessing import Process, Pipe
#from multiprocessing import Process, Pipe
import numpy as np
def f(conn):
    conn.send([42, None, 'hello']) # 子管道发送数据
    conn.close()

if __name__ == '__main__':
    parent_conn, child_conn = Pipe() # 创建一个管道(双向通信)
    p = Process(target=f, args=(child_conn,)) # 创建一个子进程 进程函数为f
    p.start() # 子进程开始
    print(parent_conn.recv()) #父管道接收 
    p.join() # 等待子进程结束
'''
[42, None, 'hello']
'''

创建多个子进程、多个管道

from torch.multiprocessing import Process, Pipe
import numpy as np

def f(conn, i):
    conn.send([42 + i, None, f'hello from process {i}'])  # 子管道发送数据
    conn.close()

if __name__ == '__main__':
    num_processes = 3  # 创建3个进程

    # 使用列表推导式创建管道和进程
    parent_conns, child_conns = zip(*[Pipe() for _ in range(num_processes)])
    processes = [Process(target=f, args=(child_conn, i)) for i, child_conn in enumerate(child_conns)]

    # 启动所有进程
    [p.start() for p in processes]

    # 接收来自所有子进程的数据
    [print(parent_conn.recv()) for parent_conn in parent_conns]

    # 等待所有进程结束
    [p.join() for p in processes]
'''
[42, None, 'hello from process 0']
[43, None, 'hello from process 1']
[44, None, 'hello from process 2']
'''

关于时间对比上的问题

在作者2或者其他部分github上的代码(如下文中的fast-ppo),对比的是在同一个episode下(同一时间下)对比收敛程度,多进程的收敛太具有不稳定性,(我也完全可以堆一个40进程且某次效果表现良好的一次作为实验对比对象,并且可以吹嘘说比原始的快了近30倍),如此对比没有显示的对比真实时间。

究其原因,实际是多进程在一个episode时,采样了4条episode,并更新了4次,所以在单个episode时,自然收敛的更快,类似于下图这种形式。
在这里插入图片描述
于是采用以环境采样的step为横坐标(现大多库里也都这么写了),看运行同样步数下所需要的时间。
此步数为原始代码中收敛所需要的步数,这样可以把收敛的程度控制,也能显示的对比时间。

这里用了tensorboard来展示训练过程,tensorboard原本也是step为横坐标,这样更贴合

from torch.utils.tensorboard import SummaryWriter 
# Build a tensorboard
writer = SummaryWriter(log_dir='runs/PPO_mul_raw/env_{}_raw_number_{}_seed_{}'.format(env_name, number, seed)) #存的位置
writer.add_scalar('return', episode_return, total_steps) #存的数据

终端启动

tensorboard --logdir runs #runs为文件夹名字

代码修改

修改主要部分为训练部分
以下面代码为例

raw代码

def train_on_policy_agent(env, agent, max_train_steps,number,seed):
    return_list = []
    # Build a tensorboard
    writer = SummaryWriter(log_dir='runs/PPO_mul_raw/env_{}_raw_number_{}_seed_{}'.format(env_name, number, seed))
    total_steps = 0 
    while total_steps < max_train_steps: 
        episode_return = 0
        transition_dict = {'states': [], 'actions': [], 'next_states': [], 'rewards': [], 'dones': []}
        state = env.reset(seed =0)[0] #1.改 gym 0.26.0版本后,env.reset()返回的是一个字典,所以需要加上[0]
        done = False
        while not done:
            #action = agent.take_action(state) #action 这里是[-2,2]的动作 
            action = agent.take_action(state) # forward 无2 这里是[-1,1]的动作
            next_state, reward,terminated, truncated, _ = env.step([action[0]*2]) 
            done = terminated or truncated
            transition_dict['states'].append(state)
            transition_dict['actions'].append(action)
            transition_dict['next_states'].append(next_state)
            transition_dict['rewards'].append(reward)
            transition_dict['dones'].append(done)

            state = next_state
            episode_return += reward
            total_steps += 1
        return_list.append(episode_return)
        agent.update(transition_dict)
        writer.add_scalar('return', episode_return, total_steps)

    return return_list



actor_lr = 1e-4
critic_lr = 5e-3#1e-1#5e-3
num_episodes = 1000
max_train_steps = 2e5 #1000*200
hidden_dim = 128
gamma = 0.9
lmbda = 0.9
epochs = 10
eps = 0.2
#device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
device = torch.device("cpu")
env_name = 'Pendulum-v1'
env = gym.make(env_name)
#env.seed(0)
torch.manual_seed(0)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]  # 连续动作空间

agent = PPOContinuous(state_dim, hidden_dim, action_dim, actor_lr, critic_lr,
                      lmbda, epochs, eps, gamma, device)

return_list = train_on_policy_agent(env, agent, max_train_steps,number=5,seed=0)

修改为如下:episode 原本为1000,由于环境的最大长度为200,所以步数为200*1000步,即2e5步
思想:
1.新增一个子进程函数:为每个子进程都创建一个环境用来采样步数
2.利用管道技术:在主进程中每次环境采样前传入已更新的网络->在子进程中接收网络并传出episode数据->在主进程中利用episode数据更新网络->回到第一步,直到达到最大步数。
3.利用多进程:在初始位置新增多个子进程,多个管道(两者数目一致),RL开始前子进程开始,RL结束后子进程强制结束。(因为子进程一制开着,得强制结束)

以下代码中: ### 为新增 ## 为4个注意点

###
def child_process(conn, env_name):
    env = gym.make(env_name)
    while True:
        agent = conn.recv()  ## 1.这个位置,先传入agent
        transition_dict = {'states': [], 'actions': [], 'next_states': [], 'rewards': [], 'dones': []}
        episode_return = 0
        episode_steps =0
        state = env.reset(seed=0)[0]
        done = False
        while not done:
            action = agent.take_action(state)
            next_state, reward, terminated, truncated, _ = env.step([action[0] * 2])
            done = terminated or truncated
            transition_dict['states'].append(state)
            transition_dict['actions'].append(action)
            transition_dict['next_states'].append(next_state)
            transition_dict['rewards'].append(reward)
            transition_dict['dones'].append(done)
            state = next_state  ## 2.先append再赋值
            episode_return += reward
            episode_steps +=1

        conn.send((transition_dict, episode_return, episode_steps))
###
def main():
    actor_lr = 1e-4
    critic_lr = 5e-3
    num_episodes = 200
    hidden_dim = 128
    gamma = 0.9
    lmbda = 0.9
    epochs = 10
    eps = 0.2
    device = torch.device("cpu")
    env_name = 'Pendulum-v1'
    env = gym.make(env_name)
    torch.manual_seed(0)
    state_dim = env.observation_space.shape[0]
    action_dim = env.action_space.shape[0]
    # Build a tensorboard
    number = 45 #5
    seed = 0
    writer = SummaryWriter(log_dir='runs/PPO_mul_raw/env_{}_mul_number_{}_seed_{}'.format(env_name, number, seed))
    agent = PPOContinuous(state_dim, hidden_dim, action_dim, actor_lr, critic_lr, lmbda, epochs, eps, gamma, device)
    ###
    process_num = 4  #
    #pipe_dict = dict((i, (pipe1, pipe2)) for i in range(process_num) for pipe1, pipe2 in (Pipe(),)) 
    pipe_dict = {i: Pipe() for i in range(process_num)} #Pipe()返回一个元组: (conn1, conn2) #与上行相同
    child_process_list = [Process(target=child_process, args=(pipe_dict[i][1], env_name)) for i in range(process_num)]
    total_steps = 0
    max_train_steps = 2e5 
    [p.start() for p in child_process_list]
    ###
    return_list = []
    while total_steps < max_train_steps:
        episode_return = 0
        [pipe_dict[j][0].send(agent) for j in range(process_num)]   ##3.先传入agent
        for j in range(process_num): ##4. i,j区分
            transition_dict, episode_return_,episode_steps = pipe_dict[j][0].recv()
            agent.update(transition_dict)
            total_steps += episode_steps
            writer.add_scalar('return', episode_return_, total_steps)
            return_list.append(episode_return_)
            
    [p.terminate() for p in child_process_list] #child 用了while True,所以要terminate
    return return_list #单位为episode

if __name__ == '__main__':
    main()

收敛为何不稳定

管道的传输顺序是固定的,那么收敛不稳定可能是进程导致的,因为进程在同一时刻采样,由于每次采样时智能体的动作实际是不同的,导致最后结果的不同。即使设置了 torch.manual_seed(0),我们不能顺序执行完一个episode的随机种子的同时,将下一个随机种子数发送到另外一个进程的开始时间顺序上不允许,时间上不允许
(即使设置进程按照进程优先级执行进程也无法实现。)

技巧

进程资源抢占问题

pytorch模型在multiprocessing下前馈速度明显降低的原因是什么?(->解决了进程中资源抢占的问题)

# 设置OMP_WAIT_POLICY为PASSIVE,让等待的线程不消耗CPU资源 #确保在pytorch前设置
os.environ['OMP_WAIT_POLICY'] = 'PASSIVE' #
import torch

设置如上操作时,1、2为设置前,6,7为设置后。
在这里插入图片描述
时间快了5s左右且在任务管理器中,cpu的占用也从97%占用降低到了28%左右
在这里插入图片描述
在这里插入图片描述

线程问题

参考: pytorch官方
根据此和实践实验下,不设置时(线程数为物理核心数)效果最佳。

设置方法1

import os
os.environ['OMP_NUM_THREADS'] = str(8) #默认物理核心数 #我这里是8

设置方法2

torch.set_num_threads(8) 

mp中的cpu数和默认线程数查看

#import torch.multiprocessing as mp
import torch
import multiprocessing as mp
num_cpu = int(mp.cpu_count()) 
print('num_cpu:',num_cpu)
print(torch.get_num_threads())
'''
num_cpu: 16
8
'''

cpu和gpu问题

关于大多数github上代码以及上面作者提到的利用cpu采样、gpu训练加速的技巧,
改法和实现我写在【深度强化学习】如何平衡cpu和gpu来加快训练速度(实录)这里

进阶(还没看懂/还没实验)

并行环境让采样速度快两个量级:Isaac Gym提速强化学习 (利用异步?Envpool)
fast-ppo(利用每个核心的超线程技术?[env1,env2,env3,env4]->[[env1,env2],[env1,env2]])
深度强化学习库的设计思想(还没写完)(双-CPU群-单-GPU?)

附代码

raw代码

import gym
import os
# 设置OMP_WAIT_POLICY为PASSIVE,让等待的线程不消耗CPU资源
os.environ['OMP_WAIT_POLICY'] = 'PASSIVE'
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import rl_utils
import time

from torch.utils.tensorboard import SummaryWriter  ##1.TB

def compute_advantage(gamma, lmbda, td_delta):
    td_delta = td_delta.detach().numpy()
    advantage_list = []
    advantage = 0.0
    for delta in td_delta[::-1]:
        advantage = gamma * lmbda * advantage + delta
        advantage_list.append(advantage)
    advantage_list.reverse()
    return torch.tensor(np.array(advantage_list), dtype=torch.float)

class PolicyNetContinuous(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(PolicyNetContinuous, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc_mu = torch.nn.Linear(hidden_dim, action_dim) # 均值 #虽然步骤一样,但里面的权重和偏置不一样
        self.fc_std = torch.nn.Linear(hidden_dim, action_dim) # 方差
 
    def forward(self, x):
        x = F.relu(self.fc1(x)) # 激活函数
        mu = torch.tanh(self.fc_mu(x)) #从[-1,1]*2 确保均值范围为[-2,2]  #测试时候归一化时无2
        std = F.softplus(self.fc_std(x)) # 保证方差为正数 softplus = log(1+exp(x))
        return mu, std # 返回高斯分布的均值和方差

class ValueNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim):
        super(ValueNet, self).__init__()  # 继承父类的所有属性
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc1_2 = torch.nn.Linear(hidden_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, 1)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc1_2(x))
        return self.fc2(x)
    
class PPOContinuous:
    ''' 处理连续动作的PPO算法 '''
    def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr,
                 lmbda, epochs, eps, gamma, device):
        self.actor = PolicyNetContinuous(state_dim, hidden_dim,action_dim).to(device)
        self.critic = ValueNet(state_dim, hidden_dim).to(device)
        self.actor_optimizer = torch.optim.Adam(self.actor.parameters(),lr=actor_lr)
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters(),lr=critic_lr)
        self.gamma = gamma
        self.lmbda = lmbda
        self.epochs = epochs
        self.eps = eps
        self.device = device

    def take_action(self, state):
        state = torch.tensor(np.array([state]), dtype=torch.float).to(self.device)
        mu, sigma = self.actor(state)
        action_dist = torch.distributions.Normal(mu, sigma)  # normal是正态分布
        action = action_dist.sample()
        return [action.item()] # 返回一个动作 这里[]是因为返回的是一个列表

    def update(self, transition_dict):
        states = torch.tensor(np.array(transition_dict['states']),
                              dtype=torch.float).to(self.device)
        actions = torch.tensor(np.array(transition_dict['actions']),
                               dtype=torch.float).view(-1, 1).to(self.device)
        rewards = torch.tensor(np.array(transition_dict['rewards']),
                               dtype=torch.float).view(-1, 1).to(self.device)
        next_states = torch.tensor(np.array(transition_dict['next_states']),
                                   dtype=torch.float).to(self.device)
        dones = torch.tensor(np.array(transition_dict['dones']),
                             dtype=torch.float).view(-1, 1).to(self.device)
        rewards = (rewards + 4.0) / 4.0  # 和TRPO一样,对奖励进行修改,方便训练 
        #其中rewards  +8

        td_target = rewards + self.gamma * self.critic(next_states) * (1 -dones)
        td_delta = td_target - self.critic(states)
        #print(td_target)
        #print(self.critic(states))   #.cpu 当你需要将张量转换为 NumPy 数组时,因为 NumPy 不能直接处理 GPU 上的张量。
        advantage = compute_advantage(self.gamma, self.lmbda,td_delta.cpu()).to(self.device)

        # 这三步和离散动作的PPO不一样
        mu, std = self.actor(states)  
        action_dists = torch.distributions.Normal(mu.detach(), std.detach())### # 动作是正态分布 得出动作的概率
        old_log_probs = action_dists.log_prob(actions)
        #print("mu",mu,"std",std)
        for _ in range(self.epochs):
            mu, std = self.actor(states) ##
            action_dists = torch.distributions.Normal(mu, std) ##
            log_probs = action_dists.log_prob(actions)
            ratio = torch.exp(log_probs - old_log_probs)
            surr1 = ratio * advantage
            surr2 = torch.clamp(ratio, 1 - self.eps, 1 + self.eps) * advantage
            actor_loss = torch.mean(-torch.min(surr1, surr2))  
            critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))
            self.actor_optimizer.zero_grad()
            self.critic_optimizer.zero_grad()
            actor_loss.backward()
            critic_loss.backward()
            self.actor_optimizer.step()
            self.critic_optimizer.step()


def train_on_policy_agent(env, agent, max_train_steps,number,seed):
    return_list = []
    # Build a tensorboard
    writer = SummaryWriter(log_dir='runs/PPO_mul_raw/env_{}_raw_number_{}_seed_{}'.format(env_name, number, seed))
    total_steps = 0 
    while total_steps < max_train_steps: 
        episode_return = 0
        transition_dict = {'states': [], 'actions': [], 'next_states': [], 'rewards': [], 'dones': []}
        state = env.reset(seed =0)[0] #1.改 gym 0.26.0版本后,env.reset()返回的是一个字典,所以需要加上[0]
        #print('state:',state)
        #state= state_norm(state)  ### 这里状态归一化
        done = False
        while not done:
            #action = agent.take_action(state) #action 这里是[-2,2]的动作 
            action = agent.take_action(state) # forward 无2 这里是[-1,1]的动作
            #next_state, reward, done, _ = env.step(action)[0:4] #2.改
            #next_state, reward,terminated, truncated, _ = env.step(action) #2.改看gym版本0.26.2版本的
            #next_state, reward,terminated, truncated, _ = env.step([np.clip(action[0]*2,-2,2)]) 
            next_state, reward,terminated, truncated, _ = env.step([action[0]*2]) 
            done = terminated or truncated
            transition_dict['states'].append(state)
            transition_dict['actions'].append(action)
            transition_dict['next_states'].append(next_state)
            transition_dict['rewards'].append(reward)
            transition_dict['dones'].append(done)
            #print(transition_dict)
            state = next_state
            episode_return += reward
            total_steps += 1
        return_list.append(episode_return)
        agent.update(transition_dict)
        # if (i_episode+1) % 10 == 0:
        #     pbar.set_postfix({'episode': '%d' % (num_episodes/10 * i + i_episode+1), 'return': '%.3f' % np.mean(return_list[-10:])})
        # pbar.update(1)
        #if (total_steps) % 200 == 0:
            #print('episode:',total_steps,'return:',np.mean(return_list[-10:]))
        writer.add_scalar('return', episode_return, total_steps)

    return return_list



actor_lr = 1e-4
critic_lr = 5e-3#1e-1#5e-3
num_episodes = 1000
max_train_steps = 2e5 #1000*200
hidden_dim = 128
gamma = 0.9
lmbda = 0.9
epochs = 10
eps = 0.2
#device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
device = torch.device("cpu")
env_name = 'Pendulum-v1'
env = gym.make(env_name)
#env.seed(0)
torch.manual_seed(0)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]  # 连续动作空间

agent = PPOContinuous(state_dim, hidden_dim, action_dim, actor_lr, critic_lr,
                      lmbda, epochs, eps, gamma, device)

return_list = train_on_policy_agent(env, agent, max_train_steps,number=5,seed=0)

mul代码

import gym
import os
# 设置OMP_WAIT_POLICY为PASSIVE,让等待的线程不消耗CPU资源 #确保在pytorch前设置
os.environ['OMP_WAIT_POLICY'] = 'PASSIVE' #
import torch
import torch.nn.functional as F
import numpy as np
from multiprocessing import Process, Pipe
from tqdm import tqdm
import time
from torch.utils.tensorboard import SummaryWriter  ##1.TB


def compute_advantage(gamma, lmbda, td_delta):
    td_delta = td_delta.detach().numpy()
    advantage_list = []
    advantage = 0.0
    for delta in td_delta[::-1]:
        advantage = gamma * lmbda * advantage + delta
        advantage_list.append(advantage)
    advantage_list.reverse()
    return torch.tensor(np.array(advantage_list), dtype=torch.float32)

class PolicyNetContinuous(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(PolicyNetContinuous, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc_mu = torch.nn.Linear(hidden_dim, action_dim)
        self.fc_std = torch.nn.Linear(hidden_dim, action_dim)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        mu = torch.tanh(self.fc_mu(x))
        std = F.softplus(self.fc_std(x))
        return mu, std

class ValueNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim):
        super(ValueNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, 1)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        return self.fc2(x)

class PPOContinuous:
    def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr, lmbda, epochs, eps, gamma, device):
        self.actor = PolicyNetContinuous(state_dim, hidden_dim, action_dim).to(device)
        self.critic = ValueNet(state_dim, hidden_dim).to(device)
        self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)
        self.gamma = gamma
        self.lmbda = lmbda
        self.epochs = epochs
        self.eps = eps
        self.device = device

    def take_action(self, state):
        state = torch.tensor(np.array([state]), dtype=torch.float).to(self.device)
        mu, sigma = self.actor(state)
        action_dist = torch.distributions.Normal(mu, sigma)
        action = action_dist.sample()
        return [action.item()]

    def update(self, transition_dict):
        states = torch.tensor(np.array(transition_dict['states']), dtype=torch.float).to(self.device)
        actions = torch.tensor(np.array(transition_dict['actions']), dtype=torch.float).view(-1, 1).to(self.device)
        rewards = torch.tensor(np.array(transition_dict['rewards']), dtype=torch.float).view(-1, 1).to(self.device)
        next_states = torch.tensor(np.array(transition_dict['next_states']), dtype=torch.float).to(self.device)
        dones = torch.tensor(np.array(transition_dict['dones']), dtype=torch.float).view(-1, 1).to(self.device)
        rewards = (rewards + 4.0) / 4.0

        td_target = rewards + self.gamma * self.critic(next_states) * (1 - dones)
        td_delta = td_target - self.critic(states)
        advantage = compute_advantage(self.gamma, self.lmbda, td_delta.cpu()).to(self.device)

        mu, std = self.actor(states)
        action_dists = torch.distributions.Normal(mu.detach(), std.detach())
        old_log_probs = action_dists.log_prob(actions)

        for _ in range(self.epochs):
            mu, std = self.actor(states)
            action_dists = torch.distributions.Normal(mu, std)
            log_probs = action_dists.log_prob(actions)
            ratio = torch.exp(log_probs - old_log_probs)
            surr1 = ratio * advantage
            surr2 = torch.clamp(ratio, 1 - self.eps, 1 + self.eps) * advantage
            actor_loss = torch.mean(-torch.min(surr1, surr2))
            critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))
            self.actor_optimizer.zero_grad()
            self.critic_optimizer.zero_grad()
            actor_loss.backward()
            critic_loss.backward()
            self.actor_optimizer.step()
            self.critic_optimizer.step()
###
def child_process(conn, env_name):
    #os.environ['OMP_NUM_THREADS'] = str(4) #默认8
    env = gym.make(env_name)
    while True:
        agent = conn.recv()  ## 1.这个位置,先传入agent
        transition_dict = {'states': [], 'actions': [], 'next_states': [], 'rewards': [], 'dones': []}
        episode_return = 0
        episode_steps =0
        state = env.reset(seed=0)[0]
        done = False
        while not done:
            action = agent.take_action(state)
            next_state, reward, terminated, truncated, _ = env.step([action[0] * 2])
            done = terminated or truncated
            transition_dict['states'].append(state)
            transition_dict['actions'].append(action)
            transition_dict['next_states'].append(next_state)
            transition_dict['rewards'].append(reward)
            transition_dict['dones'].append(done)
            state = next_state  ## 2.先append再赋值
            episode_return += reward
            episode_steps +=1

        conn.send((transition_dict, episode_return, episode_steps))
###
def main():

    actor_lr = 1e-4
    critic_lr = 5e-3
    num_episodes = 200
    hidden_dim = 128
    gamma = 0.9
    lmbda = 0.9
    epochs = 10
    eps = 0.2
    device = torch.device("cpu")
    env_name = 'Pendulum-v1'
    env = gym.make(env_name)
    torch.manual_seed(0)
    state_dim = env.observation_space.shape[0]
    action_dim = env.action_space.shape[0]
    # Build a tensorboard
    number = 46 #5
    seed = 0
    writer = SummaryWriter(log_dir='runs/PPO_mul_raw/env_{}_mul_number_{}_seed_{}'.format(env_name, number, seed))
    agent = PPOContinuous(state_dim, hidden_dim, action_dim, actor_lr, critic_lr, lmbda, epochs, eps, gamma, device)
    ###
    process_num = 4  #
    #pipe_dict = dict((i, (pipe1, pipe2)) for i in range(process_num) for pipe1, pipe2 in (Pipe(),)) 
    pipe_dict = {i: Pipe() for i in range(process_num)} #Pipe()返回一个元组: (conn1, conn2) #与上行相同
    child_process_list = [Process(target=child_process, args=(pipe_dict[i][1], env_name)) for i in range(process_num)]
    
    
    #timeList = list()
    total_steps = 0
    max_train_steps = 2e5
    #begin = time.time()
    # for p in child_process_list:
    #     p.start()
    [p.start() for p in child_process_list]
    return_list = []
    while total_steps < max_train_steps:
        episode_return = 0
        # for j in range(process_num):
        #     pipe_dict[j][0].send(agent)
        [pipe_dict[j][0].send(agent) for j in range(process_num)]   ##3.先传入agent
        for j in range(process_num): ##4. i,j区分
            transition_dict, episode_return_,episode_steps = pipe_dict[j][0].recv()
            agent.update(transition_dict)
            #episode_return += episode_return_
            total_steps += episode_steps
            writer.add_scalar('return', episode_return_, total_steps)
            return_list.append(episode_return_)

            
            

        #return_list.append(episode_return / process_num)
        #timeList.append(time.time()-begin)
        # if (i + 1) % 10 == 0:
        #      print(f'Episode: {i + 1}, Average Return: {np.mean(return_list[-10:])}, Time: {timeList[-1]}')
        # if (total_steps) % 200 == 0:
        #     print('episode:',total_steps,'return:',np.mean(return_list[-10:]))
        

    # for p in child_process_list:
    #     p.terminate()
    [p.terminate() for p in child_process_list] #child 用了while True,所以要terminate
    return return_list #单位为episode
if __name__ == '__main__':
    main()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1862874.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Kali Linux渗透测试指南(详细教程,建议收藏)

渗透测试是对信息系统遭受实际攻击时的一种受控模拟&#xff0c;是安全中十分重要的一部分。 渗透测试人员往往会使用一些成熟的工具&#xff0c;只有全面掌握这些工具&#xff0c;我们才能更好地进行渗透。 今天就给大家分享一份Kali Linux高级渗透测试指南&#xff0c;一共…

google浏览器无法访问大端口的处理方式

属性的目标中添加后缀内容或者修改后台端口为常用端口&#xff0c;比如8080等。 “C:\Program Files\Google\Chrome\Application\chrome.exe” --explicitly-allowed-ports8888

YOLOv8+SwanHub+作物检测:从可视化训练到Demo演示

1. 项目介绍 本项目旨在利用先进的YOLOv8深度学习模型对麦穗进行高效、准确的检测。我们采用了GlobalWheat数据集&#xff0c;该数据集包含丰富的麦穗图像&#xff0c;为模型的训练提供了有力的数据支持。通过该实验&#xff0c;实现高准确率的麦穗识别&#xff0c;为农业生产提…

亮数据,一款新的低代码爬虫利器!

在当今数据驱动型时代&#xff0c;数据采集和分析能力算是个人和企业的核心竞争力。然而&#xff0c;手动采集数据耗时费力且效率低下&#xff0c;而且容易被网站封禁。 我之前使用过一个爬虫工具&#xff0c;亮数据&#xff08;Bright Data&#xff09; &#xff0c;是一款低…

LLM生成模型在生物蛋白质应用:ESM3

参考&#xff1a; https://github.com/evolutionaryscale/esm 通过GPT模型原理&#xff0c;输入蛋白质序列等模态输出预测的蛋白质序列及结构 使用 参考&#xff1a;https://colab.research.google.com/github/evolutionaryscale/esm/blob/main/examples/generate.ipynb#sc…

进阶篇08——MySQL管理

系统数据库 常用工具 mysql 客户端工具 mysqladmin 执行管理操作 mysqlbinlog 数据库二进制日志转成文本 mysqlshow 数据库查找 mysqldump 数据库备份 mysqlimport/source 数据库导入

SSH的基本使用

文章目录 1. SSH使用介绍2. 如何配置OpenSSH Client和OpenSSH Server2.1 Windows系统配置2.2 Linux系统配置2.2.1. 安装OpenSSH服务2.2.2. 启动和检查SSH服务 3. SSH具体使用方式4. vscode中使用ssh远程连接 1. SSH使用介绍 SSH 最常见的用途是通过加密连接在不安全的网络中进…

qt pro文件常用配置

概述 记录一下常用的项目pro文件的一些常用配置 常用配置 QT core gui concurrent#添加concurrent并行处理模块 CONFIG windeployqt#打包部署&#xff0c;项目->构建步骤->Make参数 添加windeployqt&#xff0c;编译自动打包greaterThan(QT_MAJOR_VERSION, 4):…

VSCode安装并配置java环境

注&#xff1a;本文不包含jdk安装教程&#xff0c;还没安装jdk的先去安装jdk并配置好环境变量 目录 一、参考博客二、下载VSCode2.1 下载地址 三、安装VSCode四、安装插件4.1 安装中文包4.2 安装java相关插件 五、创建并运行java项目 一、参考博客 https://blog.csdn.net/wei…

这几个PR小技巧你Get到了吗?

学习是永无止境的&#xff0c;需要不间断地学习&#xff0c;获取新知识。今天带来了5个PR小技巧&#xff0c;可以先收藏起来Adobe Premiere Pro 2024的获取查看Baidu Cloud 1、双倍稳定画面更舒适 一般来说大型电视剧、电影使用的拍摄设备都是非常高端的&#xff0c;不像我们…

北大医院副院长李建平:用AI解决临床心肌缺血预测的难点、卡点和痛点

2024年6月14日&#xff0c;第六届北京智源大会在中关村展示中心开幕&#xff0c;海内外的专家学者围绕人工智能关键技术路径和应用场景&#xff0c;展开了精彩演讲与尖峰对话。在「智慧医疗和生物系统&#xff1a;影像、功能与仿真」论坛上&#xff0c;北京大学第一医院副院长、…

每日一题——力扣100. 相同的树(举一反三+思想解读+逐步优化)四千字好文

一个认为一切根源都是“自己不够强”的INTJ 个人主页&#xff1a;用哲学编程-CSDN博客专栏&#xff1a;每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 我的写法 代码分析 时间复杂度分析 空间复杂度分析 总结 我要更强 时间复杂度和空…

阿尔兹海默症-图像分类数据集

阿尔兹海默症-图像分类数据集 数据集&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1gSUT74XrnHmg2Z11oZNd6A?pwdwphh 提取码&#xff1a;wphh 数据集信息介绍&#xff1a; 文件夹 健康 中的图片数量: 8000 文件夹 早期轻度认知障碍 中的图片数量: 10000 文件夹 …

RabbitMQ中lazyqueue队列

lazyqueue队列非常强悍 springboot注解方式开启 // 使用注解的方式lazy.queue队列模式 非常GoodRabbitListener(queuesToDeclare Queue(name "lazy.queue",durable "true",arguments Argument(name "x-queue-mode",value "lazy&…

【MySQL进阶之路 | 高级篇】InnoDB存储结构(页的内部结构)

1. 数据库的存储结构 : 页 索引结构给我们提供了高效的索引方式&#xff0c;不过索引信息以及数据记录都是保存在文件上的.确切说是存储在页结构中.另一方面&#xff0c;索引是在存储引擎中实现的&#xff0c;MySQL服务器上的存储引擎负责对表中数据的读取和写入操作.不同的存…

【前后端实现】AHP权重计算

AHP权重计算&#xff1a; 需求&#xff1a;前端记录矩阵维度、上三角值&#xff0c;后端构建比较矩阵、计算权重值并将结果返回给前端 比较矩阵构建 如果你想要根据上三角&#xff08;不包括对角线&#xff09;的值来构建对称矩阵&#xff0c;那么你可以稍作修改上述的generate…

窗口控制

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 海龟绘图窗口就是在运行了导入turtle模块并调用了绘图方法的Python文件后&#xff0c;打开的窗口。该窗口默认的宽度为屏幕的50%&#xff0c;高度为屏…

怎么样才能让老旧的和颜色受损、丢失的照片重新上色呢?

怎么样才能让老旧的和颜色受损、丢失的照片重新上色呢&#xff1f;大家有时候在家中打扫卫生的时候&#xff0c;偶然发现了自己爸爸妈妈以前拍的照片&#xff0c;但是照片颜色已经受损的很严重了&#xff0c;几乎就是黑白的颜色&#xff0c;很难看清楚爸爸妈妈年轻时候的样子&a…

OpenAI开发者大会:OpenAI如何再次掀起AI领域的浪潮

对于AI行业的从业者来说&#xff0c;他们可能度过了一个不眠之夜。 北京时间2023年11月7日凌晨&#xff0c;美国人工智能公司OpenAI的开发者大会隆重举行。OpenAI的创始人Sam Altman与同事仅用短短45分钟的时间&#xff0c;在台上发布了他们团队的最新成果——GPT-4 Turbo。这一…

【React】portal

createPortal 允许你将 JSX 作为 children 渲染至 DOM 的不同部分。 createPortal(children, domNode, key?) 使用 portal 渲染模态对话框 import NoPortalExample from "./components/NoPortalExample"; import PortalExample from "./components/PortalEx…