详解大模型是如何理解并使用 tools ?

news2025/1/10 21:01:55

前文

大家肯定对使用大模型的函数回调或者说 Tools 已经耳熟能详了,那么他们具体内部是如何运作的呢,本文就此事会详细给大家介绍具体的细节。

tools

首先是大家最熟悉的环节,定义两个 tool 的具体实现,其实就是两个函数:

  • get_current_weather:基于给定的城市获取天气
  • get_current_time:查询当前时间

我这里为了演示说明,所以只是简单实现了功能,里面的逻辑并不复杂,大家可以看下面的代码,然后将这两个函数的具体功能描述以及对参数的定义使用 json 格式存放在列表 tools 中。tools 中的这些对于函数的功能描述或者参数的定义描述等等信息后面会传入到大模型中,大模型会解析改写成它能理解的 prompt 。所以这里按照固定的格式写 tools ,就是为了源代码中能够解析出相关的内容。具体可以看继续后面。


def get_current_weather(location):
    if '上海' in location.lower():
        return json.dumps({'location': '上海', 'temperature': '10度'}, ensure_ascii=False)
    elif '杭州' in location.lower():
        return json.dumps({'location': '杭州', 'temperature': '12度'}, ensure_ascii=False)
    else:
        return json.dumps({'location': location, 'temperature': 'unknown'}, ensure_ascii=False)

def get_current_time():
    current_datetime = datetime.now()
    formatted_time = current_datetime.strftime('%Y-%m-%d %H:%M:%S')
    return f"当前时间:{formatted_time}。"

tools = [
    {
        'name': 'get_current_weather',
        'description': '基于给定的城市获取天气',
        'parameters': {
            'type': 'object',
            'properties': {
                'location': {
                    'type': 'string',
                    'description': '城市名称',
                },
            },
            'required': ['location'],
        },
    },
    {
        "name": "get_current_time",
        "description": "获取当前时间",
        "parameters": {}
    }
]


查询天气

首先演示查询天气的 tool ,此时我们先给大模型定义一个 system 级别的角色定义,将其设定为一个可以使用工具的帮手,可以从我在 tools 定义的两个工具中挑出合适的工具完成任务。理论上我提问“上海天气如何”,然后大模型能够自动挑选出 get_current_weather 这个工具来完成天气查询任务。我这里使用的是 qwen-max 模型,大家可以换成自己的,大模型选用不是本文重点,大家不必特别关心。

整个过程分为以下几步:

  1. 给大模型传入问题 上海天气如何
  2. 大模型自己从 tools 中挑选可以解决用户问题的工具 get_current_weather
  3. 使用工具 get_current_weather 和大模型提取出来的参数 上海 获取天气情况
  4. 将天气情况传给大模型
  5. 大模型结合用户的问题,以及得到的天气情况,总结返回最后的结果。

具体第 2 和 3 步是如何实现的呢,其实大模型在拿到我们定义的存放函数信息的 json 格式的 tools 之后,将里面所有的 tools 内容拼接成了一个很长的 prompt,通过 debug ,我这里拿到了使用 qwen-max 的中间结果如下,可以看出其实就是将我们最原始的 system 定义的内容填充入了 tools 的内容供大模型理解,并按照固定的参数定义从用户的问题中提取参数,这些对原有的对话信息进行修改的过程普通用户是没有感觉的,也不会改变用户真实的对话信息,因为已经封装入了 api 中直接供大家使用了。

[Message({'role': 'system', 'content': '你是一个有用的帮手,可以使用合适的工具解决我的我问题
# 工具
## 你拥有如下工具:
### get_current_weather
get_current_weather: 基于给定的城市获取天气 输入参数:{"type": "object", "properties": {"location": {"type": "string", "description": "城市名称"}}, "required": ["location"]}
### get_current_time
get_current_time: 获取当前时间 输入参数:{}
## 你可以在回复中插入零次、一次或多次以下命令以调用工具:
✿FUNCTION✿: 工具名称,必须是[get_current_weather,get_current_time]之一。
✿ARGS✿: 工具输入
✿RESULT✿: 工具结果,需将图片用![](url)渲染出来。
✿RETURN✿: 根据工具结果进行回复'}),

Message({'role': 'user', 'content': '上海天气如何'})]

代码如下:


def get_weather():
    llm = get_chat_model({'model': 'qwen-max',  'model_server': 'dashscope', 'api_key': 'sk-c69985b9a3c94cd5a56f8cd003a3cf08'})
    messages = [{'role': 'system', 'content': "你是一个有用的帮手,可以使用合适的工具解决我的我问题"}, {'role': 'user', 'content': "上海天气如何"}]
    response = llm.chat(messages=messages, functions=tools, stream=False)
    print(f'# Assistant 回复 1:\n{response}')
    messages.extend(response)
    if messages:
        last_response = messages[-1]
        if last_response.get('function_call', None):
            function_name = last_response['function_call']['name']
            if function_name == 'get_current_weather':
                function_args = json.loads(last_response['function_call']['arguments'])
                function_response = get_current_weather(function_args.get('location'))
                print(f'# Function 回复:\n{function_response}')
                messages.append({'role': 'function', 'name': function_name, 'content': function_response, })
                print(f'# All messages:\n {messages}')
                response = llm.chat(messages=messages,  functions=tools, stream=False)
                print(f'# Assistant 回复 2:{response}')


日志打印:


# Assistant 回复 1:

\[{'role': 'assistant', 'content': '', 'function\_call': {'name': 'get\_current\_weather', 'arguments': '{"location": "上海"}'}}]

# Function 回复:

{"location": "上海", "temperature": "10度"}

# All messages:

\[{'role': 'system', 'content': '你是一个有用的帮手,可以使用合适的工具解决我的我问题'},
{'role': 'user', 'content': '上海天气如何'},
{'role': 'assistant', 'content': '', 'function\_call': {'name': 'get\_current\_weather', 'arguments': '{"location": "上海"}'}},
{'role': 'function', 'name': 'get\_current\_weather', 'content': '{"location": "上海", "temperature": "10度"}'}]

# Assistant 回复 2:

\[{'role': 'assistant', 'content': '上海现在的天气是10度。'}]


查询时间

相信大家看了上面的解释已经对整个内部的细节有了一个新的认识,这里我在简单举例,让大模型自动挑选 tools 中的工具完成查看时间的任务。过程和上面一样,不再具体赘述。

大模型结合 tools 改写的 prompt 如下:


\[Message({'role': 'system', 'content': '你是一个有用的帮手,可以使用合适的工具解决我的我问题

# 工具

## 你拥有如下工具:

### get\_current\_weather

get\_current\_weather: 基于给定的城市获取天气 输入参数:{"type": "object", "properties": {"location": {"type": "string", "description": "城市名称"}}, "required": \["location"]}

### get\_current\_time

get\_current\_time: 获取当前时间 输入参数:{}

## 你可以在回复中插入零次、一次或多次以下命令以调用工具:

✿FUNCTION✿: 工具名称,必须是\[get\_current\_weather,get\_current\_time]之一。
✿ARGS✿: 工具输入
✿RESULT✿: 工具结果,需将图片用![转存失败,建议直接上传图片文件](<转存失败,建议直接上传图片文件 url>)渲染出来。
✿RETURN✿: 根据工具结果进行回复'}),

Message({'role': 'user', 'content': '当前时间几点了'})]


代码如下:


def get_time():
    llm = get_chat_model({'model': 'qwen-max',  'model_server': 'dashscope', 'api_key': '你的key'})
    messages = [{'role': 'system', 'content': "你是一个有用的帮手,可以使用合适的工具解决我的我问题"}, {'role': 'user', 'content': "当前时间几点了"}]
    response = llm.chat(messages=messages, functions=tools, stream=False)
    print(f'# Assistant 回复 1:\n{response}')
    messages.extend(response)
    if messages:
        last_response = messages[-1]
        if last_response.get('function_call', None):
            function_name = last_response['function_call']['name']
            if function_name == 'get_current_time':
                function_response = get_current_time()
                print(f'# Function 回复:\n{function_response}')
                messages.append({'role': 'function', 'name': function_name, 'content': function_response, })
                print(f'# All messages:\n {messages}')
                response = llm.chat(messages=messages,  functions=tools, stream=False)
                print(f'# Assistant 回复 2:{response}')


日志打印:


# Assistant 回复 1:

\[{'role': 'assistant', 'content': '', 'function\_call': {'name': 'get\_current\_time', 'arguments': '{}'}}]

# Function 回复:

当前时间:2024-06-12 19:00:48。

# All messages:

\[{'role': 'system', 'content': '你是一个有用的帮手,可以使用合适的工具解决我的我问题'},
{'role': 'user', 'content': '当前时间几点了'},
{'role': 'assistant', 'content': '', 'function\_call': {'name': 'get\_current\_time', 'arguments': '{}'}},
{'role': 'function', 'name': 'get\_current\_time', 'content': '当前时间:2024-06-12 19:00:48。'}]

# Assistant 回复 2:

\[{'role': 'assistant', 'content': '当前时间是2024年6月12日19点00分48秒。'}]


总结

所以从上面的例子可以看出来,本质上大模型理解 tools 还是在拼写 prompt ,我们如果不使用 api ,直接自己拼写可以使用的函数信息,其实也是可以实现上述的功能。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1856787.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WSL+Anconda(pytorch深度学习)环境配置

动机 最近在读point cloud相关论文&#xff0c;准备拉github上相应的code跑一下&#xff0c;但是之前没有深度学习的经验&#xff0c;在配置环境方面踩了超级多的坑&#xff0c;依次来记录一下。 一开始我直接将code拉到了windows本地来运行&#xff0c;遇到了数不清的问题&a…

数据分析:置换检验Permutation Test

欢迎大家关注全网生信学习者系列&#xff1a; WX公zhong号&#xff1a;生信学习者Xiao hong书&#xff1a;生信学习者知hu&#xff1a;生信学习者CDSN&#xff1a;生信学习者2 介绍 置换检验是一种非参数统计方法&#xff0c;它不依赖于数据的分布形态&#xff0c;因此特别适…

99.9% 超高控制精度!混合量子芯片具备大规模生产潜力

内容来源&#xff1a;量子前哨&#xff08;ID&#xff1a;Qforepost&#xff09; 文丨沛贤/浪味仙 排版丨沛贤 深度好文&#xff1a;700字丨5分钟阅读 摘要&#xff1a;悉尼量子初创公司 Diraq 正与一个欧洲研发联盟展开合作&#xff0c;通过将量子比特与传统晶体管结合&…

新能源汽车 LabCar 测试系统方案(二)

什么是LabCar测试 LabCar测试目标是进行整车黄板台架功能测试&#xff0c;用于整车开发和测试阶段&#xff0c;满足设计人员和测试人员的试验需求&#xff0c;以验证整车性能&#xff0c;减少开发工作量。系统主要用于测试静态及动态工况下的纯电动汽车的各项功能实现情况。 …

股票分析学习

库&#xff1a; pandas to_datetime:它可以处理各种格式的日期和时间数据&#xff0c;并将其统一转换为 Pandas 可以理解和操作的内部日期时间格式。 matplotlib.pyplot 用户可以轻松地创建各种静态、动态、交互式和 3D 图形。 1. 绘制线图&#xff08;plot()&#xff09; …

eVTOL飞机:技术挑战、应用机遇和运动的作用

最近&#xff0c;航空业的嗡嗡声围绕着电动空中出租车、空中拼车、无人驾驶航空货物运送等。这些概念都依赖于一类称为eVTOL的飞机&#xff0c;eVTOL是电动垂直起降的缩写。 与直升机类似&#xff0c;但没有噪音和排放&#xff0c;eVTOL可以在不需要简易机场的情况下飞行、悬停…

Python | Leetcode Python题解之第171题Excel列表序号

题目&#xff1a; 题解&#xff1a; class Solution:def titleToNumber(self, columnTitle: str) -> int:number, multiple 0, 1for i in range(len(columnTitle) - 1, -1, -1):k ord(columnTitle[i]) - ord("A") 1number k * multiplemultiple * 26return n…

北京智慧养老平台app打造,智慧养老,安心享老

目前&#xff0c;我国60岁以上老年人占人口比重已超过21%&#xff0c;我国老年人口数量快速增长&#xff0c;人口老龄化程度不断加深。与此同时&#xff0c;老年人的养老需求也在逐步上升。除了日常吃穿等生活需求外&#xff0c;他们在健康、精神方面也提出来新的要求。为了满足…

Linux操作系统汇编语言基础知识(图文代码)

1、什么是汇编语言&#xff0c;它在计算机语言中的地位&#xff1f; 汇编语言是程序设计语言的基础语言&#xff0c;是唯一可以直接与计算机硬件打交道的语言2、汇编语言与源程序、汇编程序、汇编的关系&#xff1f; 3、汇编语言的特点 \1) 汇编语言与机器指令一一对应&#…

头歌——机器学习——集成学习案例

第1关&#xff1a;基于集成学习模型的应用案例 任务描述 本次任务我们将会使用银行营销数据集&#xff08;来源于UCI数据集&#xff1a;UCI Machine Learning Repository &#xff09;,该数据集共45211条数据&#xff0c;涉及葡萄牙银行机构的营销活动&#xff0c;通过一些与…

人工智能机器学习算法总结偏差和方差

1.定义 在机器学习中&#xff0c;偏差&#xff08;Bias&#xff09;和方差&#xff08;Variance&#xff09;是评估模型泛化能力的重要概念。它们描述了模型在训练数据上的表现以及对新数据的适应能力。 偏差&#xff08;Bias&#xff09; &#xff1a; 偏差是指模型的预测值与…

Redis之短信登录

文章目录 基于 Session 实现发送验证码登录校验验证码登录拦截器注册拦截器 基于 Redis 实现发送验证码登录校验登录拦截器登录拦截器优化 基于 Session 实现 发送验证码 /*** 发送手机验证码*/ PostMapping("code") public Result sendCode(RequestParam("pho…

BUCK电路布线规则、EMI分析

电源系列文章目录 本系列文章为博主在学习工作过程中的心得记录&#xff0c;欢迎评论区交流讨论。 BUCK电路工作原理、参数计算及工作模式分析BUCK电路布线规则、EMI分析电源电路中肖特基、续流二极管要求 目录 电源系列文章目录一、PCB布线规则1、输入电感与肖特基摆放2、输…

Avalonia 常用控件二 Menu相关

1、Menu 添加代码如下 <Button HorizontalAlignment"Center" Content"Menu/菜单"><Button.Flyout><MenuFlyout><MenuItem Header"打开"/><MenuItem Header"-"/><MenuItem Header"关闭"/&…

降重工具革命:如何使用AI技术优化论文原创性

论文降重一直是困扰各界毕业生的“拦路虎”&#xff0c;还不容易熬过修改的苦&#xff0c;又要迎来降重的痛。 其实想要给论文降重达标&#xff0c;我有一些独家秘诀。话不多说直接上干货&#xff01; 1、同义词改写&#xff08;针对整段整句重复&#xff09; 这是最靠谱也是…

【GD32F303红枫派使用手册】第二十四节 DHT11温湿度传感器检测实验

24.1 实验内容 通过本实验主要学习以下内容&#xff1a; DHT11操作原理 单总线GPIO模拟操作原理 24.2 实验原理 HT11是一款已校准数字信号输出的温湿度一体化数字传感器。该产品具有品质卓越、超快响应、抗干扰能力强、性价比极高等优点信号&#xff0c;传输距离可达20米以…

【人工智能】百度文心一言智能体:AI领域的新里程碑

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

关于正点原子stm32f103精英板v1的stlink通信失败问题解决方案

由于最新的固件不适配&#xff0c;我们要想其工作要下载007的固件。 https://www.st.com/en/development-tools/stsw-link007.html?dlredirect 版本选择最低的。然后选择windows文件夹&#xff0c;更新程序 然后进keil就能正常识别到了

ICMAN液位检测之WS003B管道检测模组

ICMAN液位检测之WS003B管道检测模组 体积小&#xff0c;成本低&#xff0c; 液位检测精度高&#xff0c; 有水输出低电平无水高电平&#xff0c; 适用于饮水机、咖啡机、扫地机器人、洗地机等。 有需要朋友快联系我吧&#xff01;

Flex 布局教程:语法篇

网页布局(layout)是 CSS 的一个重点应用。 布局的传统解决方案,基于盒状模型,依赖 display 属性 + position属性 + float属性。它对于那些特殊布局非常不方便,比如,垂直居中就不容易实现。 20