Posix多线程编程总结

news2025/1/11 3:46:28

Posix在线文档:

The Single UNIX Specification, Version 2 (opengroup.org)

本文主要参考这位大神的文章:

Posix多线程编程学习笔记 - 凌峰布衣 - 博客园 (cnblogs.com)

线程安全问题

多线程编程中,经常遇到的就是线程安全问题,或者说要考虑线程同步的问题。

线程同步这个概念其实挺抽象的。关于线程同步,是指各线程执行时需要按照一定的先后顺序,而不是各线程自己想干嘛就干嘛。

本人之前对线程同步,以及主要的同步技术如互斥锁、信号量、条件变量等没怎么搞透彻,这里再想一想看看。

考虑以下三个场景:

  • 场景1:多个线程,改变了同一个全局变量;
  • 场景2:多个线程,都调用printf来打印输出;
  • 场景3:多个线程,其中A线程必须等B线程执行结束才能执行。

针对场景1,可以使用互斥锁,保证同一时间只有一个线程来操作全局变量,本质是什么呢?本质是因为修改变量的过程并不是原子操作,而是会被打断的,所以,需要在修改变量期间,保证不会被其他线程打断;

针对场景2,我们需要的其实也是printf这个过程不会被打断,要不然就是这个线程打印一会儿,那个线程打印一会儿,输出的内容都串在一起了,这种情况下怎么处理呢?在freertos中,不想某段操作被其他任务打断,可以使用临界区函数来实现,那么Linux中呢?其实可以用信号量,想一想,信号量其实主要就是统计某个资源的使用情况,printf其实就是一个输出的资源,我们可以用信号量来实现,每次只有一个线程可以获取该资源;

针对这两个场景再想想,printf是个资源,其实一个全局变量也是个资源,是不是也可以用信号量呢?另外,printf要想不被打断,是不是也可以使用互斥锁呢?理论上都是可以互换的。

二者本质上都是为了实现原子操作。

再来看看第三个场景,各线程有先后执行顺序,就可以使用条件变量,这一点,相对前面两个场景,没那么容易搞混。

而这三个技术,互斥锁、信号量以及条件变量,就是多线程编程中,实现线程同步的主要手段。再看看线程同步这个词,意思其实就是我这个线程操作资源时,你其他线程得等着,这就是同步的含义。使用线程同步技术,从而保证线程安全。

这几个技术的本质应该是类似的,只是侧重点不一样,需要在实际开发中慢慢体会。

互斥锁和信号量的区别?

参考:

信号量和互斥量(锁)的区别_信号量和互斥锁的区别-CSDN博客

为了更好地区分应用场景,再想想。

互斥锁主要是用在某个会被多线程调用的代码段中;

而信号量,是先有个信号量,然后这个线程释放信号量,另一个线程获取信号量,其实也可以控制线程实现的先后顺序。 

根据《UNIX环境高级编程》,Pthread处理线程同步的,主要是互斥锁和条件变量,而信号量在进程间通信才被提及,貌似信号量主要是用于多进程对共享数据对象的访问。 

注意Linux中的相关概念和RTOS中的相关概念的区别。

Linux中会有多个进程,相对复杂,RTOS中一般只有一个进程,也就是我们的应用,然后里面有各个子任务,对应的是Linux中的线程的概念。

有哪些不一样呢?比如RTOS中消息队列就是在各线程任务之间传递消息,而Linux中主要是用在进程间通信;又比如RTOS中的信号量分为好几种,比如二值信号量、计数信号量、互斥信号量等等,都用在任务间的同步,而Linux中,这些技术有的是用于线程的,有的是用于进程的;再比如RTOS中有临界区保护这一技术手段,不过Linux中一般就是通过互斥锁信号量等等实现。

总之要明确的是,RTOS中一般只有线程的概念,也就是各子任务,所以各技术,都是用在任务之间;但是Linux中,既有线程又有进程,不同的技术有不同的应用场景,所以要加以区分。 另外,不同的操作系统,可能略有差别,实际使用时,需要进一步了解,不过用法都大差不差,重要的是,别以为都是统一的用法,然后产生疑惑,还不知道是咋回事。

Pthreads 概述

历史上,硬件销售商实现了私有版本的多线程库。这些实现在本质上各自不同,使得程序员难于开发可移植的应用程序。 为了使用线程所提供的强大优点,需要一个标准的程序接口。对于UNIX系统,IEEE POSIX 1003.1c(1995)标准制订了这一标准接口。依赖于该标准的实现就称为POSIX threads 或者Pthreads。现在多数硬件销售商也提供Pthreads,附加于私有的API。 Pthreads 被定义为一些C语言类型和函数调用,用pthread.h头(包含)文件和线程库实现。

所以说,Pthreads,其实就是POSIX threads,也就是符合posix标准的线程操作接口。

线程管理

Pthreads API中的函数可以非正式的划分为三大类: 

线程管理(Thread management: 第一类函数直接用于线程:创建(creating),分离(detaching),连接(joining)等等。包含了用于设置和查询线程属性(可连接,调度属性等)的函数。 

互斥量(Mutexes: 第二类函数是用于线程同步的,称为互斥量(mutexes),是"mutual exclusion"的缩写。Mutex函数提供了创建,销毁,锁定和解锁互斥量的功能。同时还包括了一些用于设定或修改互斥量属性的函数。 

条件变量(Condition variables):第三类函数处理共享一个互斥量的线程间的通信,基于程序员指定的条件。这类函数包括指定的条件变量的创建,销毁,等待和受信(signal)。设置查询条件变量属性的函数也包含其中。 

创建和结束线程

函数: 

pthread_create (thread,attr,start_routine,arg)  

pthread_exit (status)  

pthread_attr_init (attr)  

pthread_attr_destroy (attr)  

最初,main函数包含了一个缺省的线程,也就是主线程。其它线程则需要程序员显式地创建。 

有个疑惑,主线程mian里面创建完其他线程后,是进入while死循环,还是直接return返回?

参考:

线程创建后,避免主线程先于子线程结束的四种方式_怎么让新创建的线程不随主线程结束运行-CSDN博客

pthread_create 创建一个新线程并使之运行起来。该函数可以在程序的任何地方调用。 

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
    void *(*start_routine)(void*), void *arg);

pthread_create参数: 

  • thread:返回一个新线程标识符,也就是线程ID
  • attr:线程属性对象。可以指定一个线程属性对象,或者NULL为缺省值,一般需要时会在属性里设置线程的优先级和栈大小;
  • start_routine:线程将会执行的函数,注意该函数的类型void *(*)(void *)
  • arg: 传递给start_routine单个参数,传递时必须转换成指向void的指针类型。没有参数传递时,可设置为NULL。 

一个进程可以创建的线程最大数量取决于系统实现。 

Q:一个线程被创建后,怎么知道操作系统何时调度该线程使之运行? 

A:线程何时何地被执行取决于操作系统实现,强壮的程序应该不依赖于线程执行的顺序。

线程属性: 

  • 线程被创建时会带有默认的属性。其中的一些属性可以被程序员用线程属性对象来修改;
  • pthread_attr_init 和 pthread_attr_destroy用于初始化/销毁先成属性对象; 

结束终止: 

  • 结束线程的方法有以下几种: 
    • 线程从主线程(main函数的初始线程)返回; 
    • 线程调用了pthread_exit函数; 
    • 其它线程使用 pthread_cancel函数结束线程; 
    • 调用exec或者exit函数,整个进程结束; 

pthread_exit用于显式退出线程。典型地,pthread_exit()函数在线程完成工作不再需要的时候被调用,退出线程。注意,哪个线程调用的,就结束哪个线程。

#include <pthread.h>

void pthread_exit(void *value_ptr);

参数retval 是 void* 类型的指针,可以指向任何类型的数据,它指向的数据将作为线程退出时的返回值。如果线程不需要返回任何数据,将 retval 参数置为 NULL 即可。

示例如下:

#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

void *thread_fun1(void *param)
{
    while(1)
    {
        printf("I am thread-1\n");
        sleep(1);
    }
    
    return NULL;
}

void *thread_fun2(void *param)
{
    while(1)
    {
        printf("you are thread-2\n");
        sleep(1);
    }
    
    return NULL;
}

int main(int argc, char *argv[])
{
    pthread_t tid1, tid2;
    int rc;

    rc = pthread_create(&tid1, NULL, thread_fun1, NULL);
    if (rc < 0){ 
         printf("ERROR; return code from pthread_create() is %d\n", rc); 
         exit(-1); 
    } 

    rc = pthread_create(&tid2, NULL, thread_fun2, NULL);
    if (rc < 0){ 
         printf("ERROR; return code from pthread_create() is %d\n", rc); 
         exit(-1); 
    }

    pthread_exit(NULL);//主线程退出了
}

互斥量

 

互斥量(Mutex)是“mutual exclusion”的缩写。互斥量是实现线程同步,和保护同时写共享数据的主要方法。

互斥量对共享数据的保护就像一把锁。在Pthreads中,任何时候仅有一个线程可以锁定互斥量,因此,当多个线程尝试去锁定该互斥量时仅有一个会成功。直到锁定互斥量的线程解锁互斥量后,其他线程才可以去锁定互斥量。线程必须轮着访问受保护数据。 

互斥量可以防止“竞争”条件。

一个拥有互斥量的线程经常用于更新全局变量。确保了多个线程更新同样的变量以安全的方式运行,最终的结果和一个线程处理的结果是相同的(在受保护的地方,多个线程对于资源的操作,就像是一个线程中对数据的先后处理)。这个更新的变量属于一个“临界区(critical section)”。 

使用互斥量的典型顺序如下: 

  • 创建和初始一个互斥量 
  • 多个线程尝试去锁定该互斥量 
  • 仅有一个线程可以成功锁定改互斥量 
  • 锁定成功的线程做一些处理 
  • 线程解锁该互斥量 
  • 另外一个线程获得互斥量,重复上述过程 
  • 最后销毁互斥量 

当多个线程竞争同一个互斥量时,失败的线程会阻塞在lock调用处。可以用“trylock”替换“lock”,则失败时不会阻塞。 

当保护共享数据时,程序员有责任去确认是否需要使用互斥量。如,若四个线程会更新同样的数据,但仅有一个线程用了互斥量,则数据可能会损坏。 

如下程序:

补充

编译时报错:

undefined reference to 'pthread_create'

 

参考:

Linux下undefined reference to ‘pthread_create’问题解决-CSDN博客

问题原因:
pthread 库不是 Linux 系统默认的库,连接时需要使用静态库 libpthread.a,所以在使用pthread_create()创建线程,以及调用 pthread_atfork()函数建立fork处理程序时,需要链接该库。
问题解决:
在编译中要加 -lpthread参数
gcc thread.c -o thread -lpthread
thread.c为你些的源文件,不要忘了加上头文件#include<pthread.h>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1854512.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

React AntDesign Layout组件布局刷新页面错乱闪动

大家最近在使用React AntDesign Layout组件布局后刷新页面时&#xff0c;页面布局错乱闪动 经过组件属性的研究才发现&#xff0c;设置 hasSider 为 true 就能解决上面的问题&#xff0c;耽搁了半天的时间&#xff0c;接着踩坑接着加油&#xff01;&#xff01;&#xff01; …

STM32学习 修改系统主频

前面时钟树的学习说明单片机的主频是可以修改的&#xff0c;那么怎么更改系统的主频&#xff0c;这里做一个简单的介绍。首先要明白&#xff0c;单片机的程序是如何运行&#xff0c;这里简单说明一下。 对应的代码在startup_stm32....文件里面&#xff0c;这里是复位程序的汇编…

第T2周:彩色图片分类

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 &#x1f449; 要求&#xff1a; 学习如何编写一个完整的深度学习程序了解分类彩色图片会灰度图片有什么区别测试集accuracy到达72% &#x1f9be;我的环境&am…

QT事件处理系统之五:自定义事件的发送案例 sendEvent和postEvent接口

1、案例 双击窗口,会发送 自定义事件,然后在事件过滤中心进行拦截处理自定义事件。 2、核心代码 /*解释:双击窗口时,将产生双击事件,然后该事件被包裹成一个对象,随后将会被发往event事件中心,然后进行事件的处理(Widget对象);因为m_lineEdit开启了事件过滤机制,所…

【UML用户指南】-21-对基本行为建模-活动图

目录 1、概念 2、组成结构 2.1、动作 2.2、活动节点 2.3、控制流 2.4、分支 2.5、分岔和汇合 2.6、泳道 2.7、对象流 2.8、扩展区域 3、一般用法 3.1、对工作流建模 3.2、对操作建模 一个活动图从本质上说是一个流程图&#xff0c;展现从活动到活动的控制流 活动图…

图像编辑技术的新篇章:基于扩散模型的综述

在人工智能的浪潮中&#xff0c;图像编辑技术正经历着前所未有的变革。随着数字媒体、广告、娱乐和科学研究等领域对高质量图像编辑需求的不断增长&#xff0c;传统的图像编辑方法已逐渐无法满足日益复杂的视觉内容创作需求。尤其是在AI生成内容&#xff08;AIGC&#xff09;的…

【论文复现|智能算法改进】一种基于多策略改进的鲸鱼算法

目录 1.算法原理2.改进点3.结果展示4.参考文献5.代码获取 1.算法原理 SCI二区|鲸鱼优化算法&#xff08;WOA&#xff09;原理及实现【附完整Matlab代码】 2.改进点 混沌反向学习策略 将混沌映射和反向学习策略结合&#xff0c;形成混沌反向学习方法&#xff0c;通过该方 法…

三十八篇:架构大师之路:探索软件设计的无限可能

架构大师之路&#xff1a;探索软件设计的无限可能 1. 引言&#xff1a;架构的艺术与科学 在软件工程的广阔天地中&#xff0c;系统架构不仅是设计的骨架&#xff0c;更是灵魂所在。它如同建筑师手中的蓝图&#xff0c;决定了系统的结构、性能、可维护性以及未来的扩展性。本节…

LSSS算法实现,基于eigen和pbc密码库【一文搞懂LSSS,原理+代码】

文章目录 一. LSSS简介1.1 概述1.2 线性秘密分享方案&#xff08;LSSS&#xff09;与 Shamir的秘密分享方案对比LSSS1.2.1 Shamir的秘密分享方案1.2.2 线性秘密分享方案&#xff08;LSSS&#xff09;1.2.3 主要区别 二. 基于矩阵的LSSS加解密原理分析2.1 LSSS矩阵构造2.1.1 定义…

【python】python基于微博互动数据的用户类型预测(随机森林与支持向量机的比较分析)(源码+数据集+课程论文)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

群体优化算法---电磁共振优化算法(EROA)介绍包含示例滤波器设计

介绍 电磁共振优化算法&#xff08;Electromagnetic Resonance Optimization Algorithm, EROA&#xff09;是一种新型的元启发式优化算法&#xff0c;其灵感来源于电磁共振现象。电磁共振是一种物理现象&#xff0c;当一个系统在特定频率下响应最大时&#xff0c;这个频率被称…

【算法】优先级队列-基础与应用

优先级队列&#xff08;Priority Queue&#xff09;是一种特殊的队列类型&#xff0c;它允许在其元素中分配优先级。与传统的先进先出&#xff08;FIFO&#xff09;队列不同&#xff0c;优先级队列中元素的出队顺序取决于它们的优先级。优先级较高的元素会被优先处理&#xff0…

LLaMA:挑战大模型Scaling Law的性能突破

实际问题 在大模型的研发中,通常会有下面一些需求: 计划训练一个10B的模型,想知道至少需要多大的数据?收集到了1T的数据,想知道能训练一个多大的模型?老板准备1个月后开发布会,给的资源是100张A100,应该用多少数据训多大的模型效果最好?老板对现在10B的模型不满意,想…

完美解决找不到steam_api64.dll无法执行代码问题

游戏缺失steam_api64.dll通常意味着该游戏依赖于Steam平台的一些功能或服务&#xff0c;而这个DLL文件是Steam客户端的一部分&#xff0c;用于游戏与Steam平台之间的交互。如果游戏中缺失这个文件&#xff0c;可能会出现无法启动、崩溃或其他问题。 一&#xff0c;详细了解stea…

数据结构8---查找

一、静态查找和动态查找 &#xff08;一&#xff09;静态查找 静态查找:数据集合稳定&#xff0c;不需要添加,删除元素的查找操作。 对于静态查找来说&#xff0c;我们不妨可以用线性表结构组织数据&#xff0c;这样可以使用顺序查找算法&#xff0c;如果我们再对关键字进行…

XSS跨站攻击漏洞

XSS跨站攻击漏洞 一 概述 1 XSS概述 xss全称为&#xff1a;Cross Site Scripting&#xff0c;指跨站攻击脚本&#xff0c;XSS漏洞发生在前端&#xff0c;攻击的是浏览器的解析引擎&#xff0c;XSS就是让攻击者的JavaScript代码在受害者的浏览器上执行。 XSS攻击者的目的就是…

【从0实现React18】 (三) 初探reconciler 带你初步探寻React的核心逻辑

Reconciler 使React核心逻辑所在的模块&#xff0c;中文名叫协调器&#xff0c;协调(reconciler)就是diff算法的意思 reconciler有什么用&#xff1f; 在前端框架出现之前&#xff0c;通常会使用 jQuery 这样的库来开发页面。jQuery 是一个过程驱动的库&#xff0c;开发者需要…

SLAM Paper Reading和代码解析

最近对VINS、LIO-SAM等重新进行了Paper Reading和代码解析。这两篇paper和代码大约在三年前就读过&#xff0c;如今重新读起来&#xff0c;仍觉得十分经典&#xff0c;对SLAM算法研发具有十分重要的借鉴和指导意义。重新来读&#xff0c;对其中的一些关键计算过程也获得了更新清…

java的输出流File OutputStream

一、字节输出流FileOutput Stream 1、定义 使用OutputStream类的FileOutput Stream子类向文本文件写入的数据。 2.常用构造方法 3.创建文件输出流对象的常用方式 二、输出流FileOutputStream类的应用示例 1.示例 2、实现步骤 今天的总结就到此结束啦&#xff0c;拜拜&#x…