【python】python基于微博互动数据的用户类型预测(随机森林与支持向量机的比较分析)(源码+数据集+课程论文)【独一无二】

news2025/1/11 20:50:08

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


【python】python基于微博互动数据的用户类型预测(随机森林与支持向量机的比较分析)(源码+数据集+课程论文)【独一无二】


目录

  • 【python】python基于微博互动数据的用户类型预测(随机森林与支持向量机的比较分析)(源码+数据集+课程论文)【独一无二】
  • 一、设计要求
  • 二、设计思路
  • 三、模型分析分析


一、设计要求

基于微博数据的分析,特别是针对微博内容和用户互动数据的分析,可以揭示出用户类型的分布情况,以及不同用户类型之间的行为差异。这对于了解用户需求、优化内容推送策略、提高用户黏性等方面具有重要意义。然而,传统的统计分析方法在面对海量非结构化数据时,存在一定的局限性。机器学习技术,特别是分类算法,提供了一种有效的解决方案。

在本文中,我们将探讨如何利用机器学习技术,对微博内容和用户互动数据进行分类分析。具体而言,我们将使用随机森林(Random Forest)和支持向量机(Support Vector Machine, SVM)两种常用的分类算法,对微博数据进行建模和预测。通过对比这两种算法的性能,我们旨在找到最适合微博数据分析的分类方法。

为了增强模型的鲁棒性和实用性,我们还将对训练数据增加噪声,以模拟现实数据中可能存在的随机扰动和异常情况。然后,通过对模型的评估和比较,分析不同算法在应对噪声数据时的表现,从而为实际应用提供指导。


二、设计思路

数据读取+处理+清洗 部分代码 略...

(一)探索性数据分析

  1. 评论数、转发数、点赞数的变化趋势图
    意义:该图展示了每个文件中每条微博的评论数、转发数和点赞数的变化趋势。
    解释:通过这张图,我们可以直观地看到微博互动数据的波动情况,识别出哪些微博获得了较多的评论、转发和点赞。这些数据可以帮助我们理解用户对不同内容的反应,并发现哪些内容更能引起用户的互动
    在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 微博预测 ” 获取。👈👈👈

. 用户类型分布饼状图
意义:该图展示了每个文件中不同用户类型(如普通用户、认证用户等)的分布情况。
解释:通过饼状图,我们可以看到各类用户在数据中的占比。这有助于了解微博平台上不同类型用户的活跃度和分布特点,为制定针对不同用户群体的营销策略提供依据。
在这里插入图片描述
3. 信源地域分布柱状图
意义:该图展示了每个文件中微博信源的地域分布情况。
解释:通过柱状图,我们可以直观地看到微博内容的来源地域,识别出哪些地区的用户更活跃。这对于地域性营销策略的制定和区域性用户行为的研究具有重要意义。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 微博预测 ” 获取。👈👈👈

在这里插入图片描述
评论数、转发数、点赞数的箱线图
意义:该图展示了每个文件中微博的评论数、转发数和点赞数的分布情况。
解释:箱线图能够显示数据的分布特征,包括中位数、四分位数以及异常值。通过箱线图,我们可以了解微博互动数据的集中趋势和离散程度,识别出哪些微博表现异常突出或低迷。

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 微博预测 ” 获取。👈👈👈

  1. 粉丝数与评论数、转发数、点赞数的散点图
    意义:该图展示了每个文件中微博账号的粉丝数与评论数、转发数、点赞数之间的关系。
    解释:散点图可以揭示粉丝数与微博互动数据之间的关系,帮助我们了解粉丝数量对微博互动情况的影响。通过观察散点图中的点分布情况,可以识别出粉丝数与互动数据之间的相关性。

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 微博预测 ” 获取。👈👈👈

  1. 用户类型分布的环形图
    意义:该图展示了每个文件中不同用户类型的分布情况,形式与饼状图类似,但视觉效果有所不同。
    解释:环形图与饼状图的作用相同,通过不同的视觉表现形式展示用户类型的分布情况,有助于多角度地理解用户结构和行为特征。

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 微博预测 ” 获取。👈👈👈


三、模型分析分析

  1. 数据处理与预处理
    在本次数据分析中,我们从三个不同时间段的微博数据文件中提取数据,并对其进行了预处理。预处理步骤包括填充空值、特征提取、标签编码和数据集划分。通过这些步骤,我们将原始微博数据转化为适合机器学习模型训练的数据集。

具体来说,微博内容被转换为TF-IDF向量,捕捉文本中的关键信息,并结合评论数、转发数和点赞数等数值特征,形成一个综合特征集。随后,使用 LabelEncoder 对用户类型标签进行了编码,将其转换为数字格式,以便模型处理。最后,我们将数据集划分为训练集和测试集,保证模型训练和评估的独立性。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 微博预测 ” 获取。👈👈👈

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.preprocessing import LabelEncoder
from scipy.sparse import hstack

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

# 读取Excel文件
file_paths = [
    'xxxxx.xlsx',
    'xxxxx.xlsx',
    'xxxxx.xlsx'
]

dfs = [pd.read_excel(file, engine='openpyxl') for file in file_paths]
df = pd.concat(dfs, ignore_index=True)

# 检查数据
print(df.head())
print(df['标题/微博内容'].head())
print(df['评论数'].describe())

在这里插入图片描述

# 特征提取和标签编码
df['用户类型'].fillna('其他', inplace=True)  # 填充空值
X_text = df['标题/微博内容']
X_numeric = df[['评论数', '转发数', '点赞数']]
y = df['用户类型']


# 将文本特征转换为TF-IDF向量
vectorizer = TfidfVectorizer(max_features=5000)
# 略

# 合并文本特征和数值特征
X = hstack([X_text_tfidf, X_numeric])

# 标签编码
label_encoder = LabelEncoder()
# 略

# 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练
# >👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 微博预测 ” 获取。👈👈👈

  1. 支持向量机模型训练与评估
    支持向量机(SVM)是一种常用的分类算法,尤其适用于二分类问题。它通过寻找最佳的超平面,将不同类别的样本分开。SVM在处理高维数据和非线性数据方面具有显著优势。本次分析中,我们使用 SVC 训练支持向量机模型,并对其进行评估。

分类报告:分类报告详细展示了支持向量机模型在各类别上的精确率、召回率和F1分数。
混淆矩阵:混淆矩阵用于评估支持向量机模型的分类效果,帮助识别正确分类和错误分类的样本数。
准确率:支持向量机模型的准确率表示模型在测试数据集上的总体表现。
支持向量机模型的分类报告显示,其在多数类别上的表现优异,特别是在处理复杂边界样本时表现出色。混淆矩阵热力图显示,大部分样本被正确分类,但在某些类别上存在少量错误分类。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 微博预测 ” 获取。👈👈👈

在这里插入图片描述
5. 模型对比分析
通过准确率对比图,我们可以直观地比较随机森林和支持向量机模型的整体表现。图示显示了两种模型在测试集上的准确率,便于识别哪种模型在本次数据集上的表现更好。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 微博预测 ” 获取。👈👈👈

随机森林与支持向量机的对比:从准确率对比图中可以看出,随机森林和支持向量机模型的准确率差异较小,表明两种模型在用户类型预测方面都具有较高的准确性。然而,具体的分类报告和混淆矩阵显示,随机森林在处理多类别问题时的表现可能更为稳定,而支持向量机在处理复杂边界样本时更具优势。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 微博预测 ” 获取。👈👈👈

在这里插入图片描述
通过对微博数据的深入分析和机器学习模型的训练与评估,我们可以得出以下结论:

数据预处理:高质量的数据预处理是模型成功的基础。TF-IDF特征提取和数值特征的结合,保证了模型输入的多样性和信息量。
模型选择:随机森林和支持向量机模型在微博用户类型预测方面都表现出色。随机森林在处理多类别问题时更稳定,而支持向量机在复杂样本分类上更具优势。
噪声处理:增加训练数据中的噪声,提升了模型的鲁棒性和适应性,使其在面对真实数据中的随机扰动时,依然能够保持较高的预测准确性。
基于上述分析,建议在实际应用中,根据具体的数据特点和需求选择合适的模型。如果数据集具有较高的维度和复杂的边界,支持向量机可能更适合;而在处理多类别问题和大规模数据时,随机森林可能表现更优。同时,噪声处理方法可以进一步提升模型在实际场景中的表现,建议在模型训练过程中考虑加入适当的噪声处理步骤。

在这里插入图片描述


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 微博预测 ” 获取。👈👈👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1854496.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

群体优化算法---电磁共振优化算法(EROA)介绍包含示例滤波器设计

介绍 电磁共振优化算法(Electromagnetic Resonance Optimization Algorithm, EROA)是一种新型的元启发式优化算法,其灵感来源于电磁共振现象。电磁共振是一种物理现象,当一个系统在特定频率下响应最大时,这个频率被称…

【算法】优先级队列-基础与应用

优先级队列(Priority Queue)是一种特殊的队列类型,它允许在其元素中分配优先级。与传统的先进先出(FIFO)队列不同,优先级队列中元素的出队顺序取决于它们的优先级。优先级较高的元素会被优先处理&#xff0…

LLaMA:挑战大模型Scaling Law的性能突破

实际问题 在大模型的研发中,通常会有下面一些需求: 计划训练一个10B的模型,想知道至少需要多大的数据?收集到了1T的数据,想知道能训练一个多大的模型?老板准备1个月后开发布会,给的资源是100张A100,应该用多少数据训多大的模型效果最好?老板对现在10B的模型不满意,想…

完美解决找不到steam_api64.dll无法执行代码问题

游戏缺失steam_api64.dll通常意味着该游戏依赖于Steam平台的一些功能或服务,而这个DLL文件是Steam客户端的一部分,用于游戏与Steam平台之间的交互。如果游戏中缺失这个文件,可能会出现无法启动、崩溃或其他问题。 一,详细了解stea…

数据结构8---查找

一、静态查找和动态查找 (一)静态查找 静态查找:数据集合稳定,不需要添加,删除元素的查找操作。 对于静态查找来说,我们不妨可以用线性表结构组织数据,这样可以使用顺序查找算法,如果我们再对关键字进行…

XSS跨站攻击漏洞

XSS跨站攻击漏洞 一 概述 1 XSS概述 xss全称为:Cross Site Scripting,指跨站攻击脚本,XSS漏洞发生在前端,攻击的是浏览器的解析引擎,XSS就是让攻击者的JavaScript代码在受害者的浏览器上执行。 XSS攻击者的目的就是…

【从0实现React18】 (三) 初探reconciler 带你初步探寻React的核心逻辑

Reconciler 使React核心逻辑所在的模块,中文名叫协调器,协调(reconciler)就是diff算法的意思 reconciler有什么用? 在前端框架出现之前,通常会使用 jQuery 这样的库来开发页面。jQuery 是一个过程驱动的库,开发者需要…

SLAM Paper Reading和代码解析

最近对VINS、LIO-SAM等重新进行了Paper Reading和代码解析。这两篇paper和代码大约在三年前就读过,如今重新读起来,仍觉得十分经典,对SLAM算法研发具有十分重要的借鉴和指导意义。重新来读,对其中的一些关键计算过程也获得了更新清…

java的输出流File OutputStream

一、字节输出流FileOutput Stream 1、定义 使用OutputStream类的FileOutput Stream子类向文本文件写入的数据。 2.常用构造方法 3.创建文件输出流对象的常用方式 二、输出流FileOutputStream类的应用示例 1.示例 2、实现步骤 今天的总结就到此结束啦,拜拜&#x…

JVM专题七:JVM垃圾回收机制

JVM专题六:JVM的内存模型中,我们介绍了JVM内存主要分哪些区域,这些区域分别是干什么的,同时也举了个例子,在运行过程种各个区域数据是怎样流转的。细心的小伙伴可能发现一个问题,在介绍完方法弹栈以后就没有…

SQL找出所有员工当前薪水salary情况

系列文章目录 文章目录 系列文章目录前言 前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 描述 有一个薪水表…

13.爬虫---PyMongo安装与使用

13.PyMongo安装与使用 1.安装 PyMongo2.使用PyMongo2.1连接数据库和集合2.2增加数据2.3修改数据2.4查询数据2.5删除数据 3.总结 MongoDB 安装可以看这篇文章MongoDB安装配置教程(详细版) 1.安装 PyMongo PyMongo 是Python中用于连接MongoDB数据库的库&a…

win32API(CONSOLE 相关接口详解)

前言: Windows这个多作业系统除了协调应⽤程序的执⾏、分配内存、管理资源之外,它同时也是⼀个很⼤的服务中⼼,调⽤这个服务中⼼的各种服务(每⼀种服务就是⼀个函数),可以帮应⽤程式达到开启视窗、描绘图形…

Linux使用——查看发行版本、内核、shell类型等基本命令

先做快照 虚拟机中编辑网络 关机 普通账户和管理员账户 互相对照 localhost相当于IP 参数: 短格式:以减号(-)开头,参数字母 长格式:以2个减号(--)后跟上完整的参数单词 当前发行版本 [rootserver ~]# cat /etc/redhat-release Red Hat Enterprise Linux release 9.…

区块链技术原理

1.起源: ➢ 中本聪(Satoshi Nakamoto), 2008 ➢ 比特币:一种点对点的电子现金系统 2.分布式账本技术原理 ➢ 将交易向全网所有节点进行广播 ➢ 众多记账节点对记账权达成共识,由共识确认的记账节点把记账区块发布给全网 ➢ 所有账本数据完整存储于区块…

ADD属性驱动架构设计(一)

目录 一、架构设计过程 1.1、架构设计过程 1.1.1、设计目的 1.1.2、质量属性(非功能需求) 1.1.3、核心功能(功能需求) 1.1.4、架构关注 1.1.5、约束条件 1.2、基于设计过程 二、什么是ADD? 三、为什么选择ADD? 四、作…

OpenGL3.3_C++_Windows(18)

接口块: glsl彼此传输数据,通过in / out,当更多的变量,涉及数组和结构体接口块(Interface Block)类似struct,in / out 块名{……}实例名 Uniform缓冲对象: 首先理解uniform Object:负责向gl…

RTSP协议分析与安全实践

RTSP协议,全称实时流协议(Real Time Streaming Protocol),前文已经简单介绍了RTSP相关协议; RTSP和RTP(RTCP) 这里再提一下RTSP和RTP/RTCP、RSVP的关系;如图: RTSP和HTTP 相似性:RTSP和HTTP协议都使用纯…

Android13 WMS窗口层级树

1,认识层级树 可以通过dumpsys activity containers 看到 WMS 层级树的结构 ACTIVITY MANAGER CONTAINERS (dumpsys activity containers) ROOT typeundefined modefullscreen override-modeundefined requested-bounds[0,0][0,0] bounds[0,0][1440,2960]#0 Displa…