肾虚学习实验第T1周:实现mnist手写数字识别

news2024/12/25 9:15:02
>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

目录

一、前言

作为一名研究牲,一定要了解pytorch和tensorflow。下面我来介绍一下。

TensorFlow和PyTorch是两个流行的开源机器学习库,它们都支持深度学习模型的开发和训练。尽管它们在很多方面有相似之处,但它们之间也存在一些关键的区别:

1. **设计哲学**:
   - **TensorFlow**:最初由Google Brain团队开发,TensorFlow的设计更倾向于生产环境,强调模型的可扩展性和部署的灵活性。TensorFlow提供了一个静态计算图,这意味着在执行之前,整个计算图需要被定义和优化。
   - **PyTorch**:由Facebook的AI研究团队开发,PyTorch的设计更倾向于研究和快速原型开发,强调动态性和易用性。PyTorch使用动态计算图,允许在运行时修改图。

2. **易用性**:
   - **TensorFlow**:对于初学者来说可能稍微复杂一些,因为它需要用户理解计算图的概念。
   - **PyTorch**:提供了一个更接近于NumPy的API,使得从NumPy过渡到深度学习更加自然。

3. **灵活性**:
   - **TensorFlow**:由于其静态图的特性,可能在某些需要高度灵活性的场景下不如PyTorch灵活。
   - **PyTorch**:动态图使得在运行时修改模型变得更加容易,这对于研究和快速迭代非常有用。

4. **性能**:
   - 两者在性能上都非常出色,但TensorFlow在某些情况下可能因为其优化的静态图而提供更好的性能。

5. **社区和生态系统**:
   - **TensorFlow**:由于其较早的发布和Google的支持,拥有一个庞大的社区和丰富的库。
   - **PyTorch**:虽然起步较晚,但社区发展迅速,特别是在研究领域。

6. **部署**:
   - **TensorFlow**:提供了TensorFlow Serving等工具,使得模型部署更加方便。
   - **PyTorch**:模型部署可能需要更多的工作,但PyTorch与ONNX(Open Neural Network Exchange)的集成正在改善这一状况。

7. **多GPU支持**:
   - **TensorFlow**:从设计之初就考虑了多GPU支持。
   - **PyTorch**:虽然也支持多GPU,但在某些情况下可能需要更多的手动配置。

8. **API一致性**:
   - **TensorFlow**:API在不同版本之间可能发生变化,这可能会影响向后兼容性。
   - **PyTorch**:API相对稳定,变化较少。

选择哪个框架往往取决于个人偏好、项目需求和团队熟悉度。两者都是强大的工具,能够支持复杂的深度学习任务。

二、我的环境

三、前期准备

1.设置GPU

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

2.导入数据

 

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

# 导入mnist数据,依次分别为训练集图片、训练集标签、测试集图片、测试集标签
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

3.归一化

归一化与标准化icon-default.png?t=N7T8https://blog.csdn.net/qq_38251616/article/details/126048261

# 将像素的值标准化至0到1的区间内。(对于灰度图片来说,每个像素最大值是255,每个像素最小值是0,也就是直接除以255就可以完成归一化。)
train_images, test_images = train_images / 255.0, test_images / 255.0
# 查看数据维数信息
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
"""
输出:((60000, 28, 28), (10000, 28, 28), (60000,), (10000,))
"""

 4.可视化图片

# 将数据集前20个图片数据可视化显示
# 进行图像大小为20宽、10长的绘图(单位为英寸inch)
plt.figure(figsize=(20,10))
# 遍历MNIST数据集下标数值0~49
for i in range(20):
    # 将整个figure分成5行10列,绘制第i+1个子图。
    plt.subplot(2,10,i+1)
    # 设置不显示x轴刻度
    plt.xticks([])
    # 设置不显示y轴刻度
    plt.yticks([])
    # 设置不显示子图网格线
    plt.grid(False)
    # 图像展示,cmap为颜色图谱,"plt.cm.binary"为matplotlib.cm中的色表
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    # 设置x轴标签显示为图片对应的数字
    plt.xlabel(train_labels[i])
# 显示图片
plt.show()

5.调整图片格式

#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
"""
输出:((60000, 28, 28, 1), (10000, 28, 28, 1), (60000,), (10000,))
"""

 

 

四、构建简单的cnn网络

网络结构图

(1)第一步构建cnn网络模型

(2)第二步:加载并打印模型

(3)第三步: 输出结果​编辑

# 创建并设置卷积神经网络
# 卷积层:通过卷积操作对输入图像进行降维和特征抽取
# 池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
# 全连接层:在经过几个卷积和池化层之后,神经网络中的高级推理通过全连接层来完成。
model = models.Sequential([
    # 设置二维卷积层1,设置32个3*3卷积核,activation参数将激活函数设置为ReLu函数,input_shape参数将图层的输入形状设置为(28, 28, 1)
    # ReLu函数作为激活励函数可以增强判定函数和整个神经网络的非线性特性,而本身并不会改变卷积层
    # 相比其它函数来说,ReLU函数更受青睐,这是因为它可以将神经网络的训练速度提升数倍,而并不会对模型的泛化准确度造成显著影响。
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    #池化层1,2*2采样
    layers.MaxPooling2D((2, 2)),                   
    # 设置二维卷积层2,设置64个3*3卷积核,activation参数将激活函数设置为ReLu函数
    layers.Conv2D(64, (3, 3), activation='relu'),  
    #池化层2,2*2采样
    layers.MaxPooling2D((2, 2)),                   
    
    layers.Flatten(),                    #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'), #全连接层,特征进一步提取,64为输出空间的维数,activation参数将激活函数设置为ReLu函数
    layers.Dense(10)                     #输出层,输出预期结果,10为输出空间的维数
])
# 打印网络结构
model.summary()

 

五.编译模型

"""
这里设置优化器、损失函数以及metrics
这三者具体介绍可参考我的博客:
https://blog.csdn.net/qq_38251616/category_10258234.html
"""
# model.compile()方法用于在配置训练方法时,告知训练时用的优化器、损失函数和准确率评测标准
model.compile(
	# 设置优化器为Adam优化器
    optimizer='adam',
	# 设置损失函数为交叉熵损失函数(tf.keras.losses.SparseCategoricalCrossentropy())
    # from_logits为True时,会将y_pred转化为概率(用softmax),否则不进行转换,通常情况下用True结果更稳定
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    # 设置性能指标列表,将在模型训练时监控列表中的指标
    metrics=['accuracy'])

 # model.compile()方法用于在配置训练方法时,告知训练时用的优化器、损失函数和准确率评测标准

六、训练模型

"""
这里设置输入训练数据集(图片及标签)、验证数据集(图片及标签)以及迭代次数epochs
关于model.fit()函数的具体介绍可参考我的博客:
https://blog.csdn.net/qq_38251616/category_10258234.html
"""
history = model.fit(
    # 输入训练集图片
	train_images, 
	# 输入训练集标签
	train_labels, 
	# 设置10个epoch,每一个epoch都将会把所有的数据输入模型完成一次训练。
	epochs=10, 
	# 设置验证集
    validation_data=(test_images, test_labels))

 

七预测

通过下面的网络结构我们可以简单理解为,输入一张图片,将会得到一组数,这组代表这张图片上的数字为0~9中每一个数字的几率(并非概率),out数字越大可能性越大,仅此而已

在这一步中部分同学会因为 matplotlib 版本原因报 Invalid shape (28, 28, 1) for image data 的错误提示,可以将代码改为 plt.imshow(test_images[1].reshape(28,28)) 。 

plt.imshow(test_images[1])

 

#输出测试集中第一张图片的预测结果
pre = model.predict(test_images) # 对所有测试图片进行预测
pre[1] # 输出第一张图片的预测结果

 

八、知识点详解

本文使用的是最简单的CNN模型- -LeNet-5,如果是第一次接触深度学习的话,可以先试着把代码跑通,然后再尝试去理解其中的代码。

1. MNIST手写数字数据集介绍

MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges(下载后需解压)。我们一般会采用(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()这行代码直接调用,这样就比较简单

MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28,数据集样本如下:

如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个[60000,784]的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。

 

2. 神经网络程序说明

 3.模型结构说明

各层的作用

  • 输入层:用于将数据输入到训练网络
  • 卷积层:使用卷积核提取图片特征
  • 池化层:进行下采样,用更高层的抽象表示图像特征
  • Flatten层:将多维的输入一维化,常用在卷积层到全连接层的过渡
  • 全连接层:起到“特征提取器”的作用
  • 输出层:输出结果

八、总结

本周的任务中,实现了手写数字识别的任务,第一点就是准备数据集,本次数据集是可以直接下载的不用导入,构建模型,使用的是最基础的- -LeNet-5,卷积层提取特征,池化层降采样,重复两遍之后来个flatten层拉伸一下,便于全连接层输入,全连接层得出分类结果。优化器损失函数直接放在# model.compile()方法用于在配置训练方法时,告知训练时用的优化器、损失函数和准确率评测标准#方法里面了,最后直接训练即可。整体比较顺利。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1847355.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

webp动图转gif

目录 前言 解决过程 遇到问题 获取duration 前言 上一次我们实现了webp转jpg格式: https://blog.csdn.net/weixin_54143563/article/details/139758200 那么对于含动图的webp文件我们如何将其转为gif文件呢? 之所以会出现这个问题,是因…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 5G基站光纤连接问题(200分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 &#x1f…

容器之工具栏构件演示

代码; #include <gtk-2.0/gtk/gtk.h> #include <glib-2.0/glib.h> #include <gtk-2.0/gdk/gdkkeysyms.h> #include <stdio.h>int main(int argc, char *argv[]) {gtk_init(&argc, &argv);GtkWidget *window;window gtk_window_new(GTK_WINDO…

远程桌面总是连接不上,mstsc远程总是连接不上解决方法

远程桌面连接在日常生活和工作中扮演着至关重要的角色&#xff0c;它允许用户在不同地点和设备之间无缝协作。然而&#xff0c;有时用户可能会遇到MSTSC&#xff08;Microsoft远程桌面连接&#xff09;总是连接不上的问题&#xff0c;这可能是由于多种原因造成的。本文将针对这…

若依 ruoyi 排序 顺序 倒序 的实现

1. table标签新增排序相关属性 // :default-sort"defaultSort" 指定默认排序 // sort-change"handleSortChange" 指定排序点击事件 :default-sort"defaultSort" sort-change"handleSortChange" 2. 列上新增排序相关配置 自定义查询语…

解决File协议导致的CORS限制,用Node.js搭建本地服务器

文章目录 一、前言二、分析报错原因三、如何解决四、具体步骤 你是否曾遇到这样的困境&#xff1a;在本地使用file://协议直接打开HTML文件时&#xff0c;由于现代浏览器的安全限制&#xff0c;无法跨源请求&#xff08;CORS&#xff09;本地资源&#xff1f;尤其是当你试图通过…

非关系型数据库NoSQL数据层解决方案 之 redis springboot整合与读写操作 2024详解以及window版redis5.0.14下载百度网盘

redis下载安装以及基本使用 下载地址 链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;0410 一个名对应一个数值 内存级 在内存里进行操作 准备启动 我们现在就有一个redis客户端的服务器了 我们再启动一个cmd 操作redis数据库 redis里面的基本数据类型有五种 …

小程序 如何支付后获取 Unionid

接口说明 接口英文名 getPaidUnionid 功能描述 该接口用于在用户支付完成后&#xff0c;获调用本接口前需要用户完成支付&#xff0c;用户支付完成后&#xff0c;取该用户的 UnionId&#xff0c;无需用户授权。本接口支付后的五分钟内有效。 注意事项 调用前需要用户完成…

重构大学数学基础_week05_雅各比矩阵与雅各比行列式

这周来讲一下雅各比矩阵和雅各比行列式。 多元函数的局部线性属性 首先我们来回顾一下向量函数&#xff0c;就是我们输入一个向量&#xff0c;输出也是一个向量&#xff0c;我们假设现在有一个向量函数 这个函数意思就是在说&#xff0c;我们在原来的平面上有一个向量(x,y),经…

收藏||电商数据采集流程||电商数据采集API接口

商务数据分析的流程 第一步&#xff1a;明确分析目的。首先要明确分析目的&#xff0c;并把分析目的分解成若干个不同的分析要点&#xff0c;然后梳理分析思路&#xff0c;最后搭建分析框架。 第二步&#xff1a;数据采集。主流电商API接口数据采集&#xff0c;一般可以通过数…

【芯片知识】QSOP24封装-NRK3502语音识别芯片方案

一、NRK3502语音识别芯片的简介 NRK3502系列芯片是一款蓝牙双模智能语音l0T芯片。芯片集成32位CPU处理器&#xff0c;包含 UART、GPIO、SPI、SD卡、12C、ADC、TouchSensor 等外围接口;内置 NPU、浮点运算单元。 依托于在语音识别技术上的积累和算法的不断优化和创新&#xff0c…

数据库复习——模式分解

模式分解这边主要包括无损分解和保持函数依赖的分解两种形式&#xff0c;简单整理一下。 无损分解 把一个 R R R 分成 ρ { R 1 , R 2 , ⋯ , R k } \rho \{R_1,R_2,\cdots,R_k\} ρ{R1​,R2​,⋯,Rk​}&#xff0c;然后通过自然连接 R 1 ⋈ R 2 ⋈ ⋯ ⋈ R k R_1\bowtie R…

C#和python端通信之使用共享内存

一、前言 本篇主要实验通过使用共享内存实现C#端代码和python端代码之间的通信&#xff0c;主要目的是相较于直接传输较大的数据&#xff08;例如图像数据&#xff09;&#xff0c;该方式更节省时间。 二、代码 C#端&#xff1a; 创建了一个大小为1的共享内存&#xff0c;名为…

Docker容器基础知识,即linux日常运维命令

Docker 是一个流行的用 Go 语言开发的开源项目&#xff0c;基于Linux内核的cgroup、namespace及 AUFS 等技术&#xff0c;对进程进行封装隔离&#xff0c;由 Dotcloud 公司开发。Docker已成为容器行业的事实标准。 小陈发现一个有趣的事情&#xff0c;容器的英文是Container&am…

数据通信与网络(三)

物理层概述&#xff1a; 物理层是网络体系结构中的最低层 它既不是指连接计算机的具体物理设备&#xff0c;也不是指负责信号传输的具体物理介质&#xff0c; 而是指在连接开放系统的物理媒体上为上一层(指数据链路层)提供传送比特流的一个物理连接。 物理层的主要功能——为…

MDK-ARM 编译后 MAP 文件分析

本文配合 STM32 堆栈空间分布 食用更佳&#xff01; 一图胜千言。。。

U盘文件夹损坏0字节:现象解析、恢复方法与预防措施

在日常工作和生活中&#xff0c;U盘因其便携性和大容量成为我们存储和传输数据的重要工具。然而&#xff0c;当U盘中的文件夹突然损坏并显示为0字节时&#xff0c;我们可能会感到困惑和焦虑。本文将对U盘文件夹损坏0字节的现象进行详细描述&#xff0c;分析其可能的原因&#x…

[Qt]Qt框架解析:从入门到精通,探索平台开发的无限可能

一、Qt的概述 Qt是一个跨平台的C图形用户界面应用程序框架&#xff08;GUI&#xff09;。它为应用程序开发者提供建立艺术级图形界面所需的所有功能。它是完全面向对象的&#xff0c;很容易扩展&#xff0c;并且允许真正的组件编程。开发环境为Qt creator5.8.0&#xff0c;下载…

【MATLAB源码-第229期】基于matlab的有源功率因数校正仿真,采用PI调节改善功率因数;改善后达到99%.

操作环境&#xff1a; MATLAB 2022a 1、算法描述 一、整体结构概述 有源功率因数校正&#xff08;APFC&#xff09;是一种用于提高电力系统功率因数的技术&#xff0c;通过控制电流的波形&#xff0c;使其与电压的波形保持一致&#xff0c;从而减少无功功率的产生&#xff…

原来这个东西叫 Docker

大家好&#xff0c;我是徒手敲代码。 今天来聊聊 Docker 三个时代的演变 首先要先了解 Docker 出现的背景。在计算机技术的发展历程中&#xff0c;我们经历了从物理机时代到虚拟机时代&#xff0c;再到容器化时代的演变。 在物理机时代&#xff0c;应用程序直接运行在物理服务…