hive on spark 的架构和常见问题 - hive on spark 使用的是 yarn client 模式还是 yarn cluster 模式?

news2025/1/16 1:31:32

hive on spark 的架构和常见问题 - hive on spark 使用的是 yarn client 模式还是 yarn cluster 模式?

1. 回顾下 spark 的架构图和部署模式

来自官方的经典的 spark 架构图如下:

image

image
上述架构图,从进程的角度来讲,有四个角色/组件:

  • Cluster manager:An external service for acquiring resources on the cluster (e.g. standalone manager, Mesos, YARN, Kubernetes)
  • Worker node: Any node that can run application code in the cluster
  • Driver program:The process running the main() function of the application and creating the SparkContext
  • Executor: A process launched for an application on a worker node, that runs tasks and keeps data in memory or disk storage across them. Each application has its own executors.
  • 上述四个角色中,Cluster manager 和 Worker,是常驻的静态的资源管理器,是独立于 spark 应用程序之外的;
  • 上述四个角色中,driver 和 executor,是每个 spark 应用程序的运行时动态视图,用户提交的每个 spark 应用程序,都会向资源管理器申请资源,并在申请获得的资源中启动 driver 和 exector 对应的 jvm 进程;
  • spark 支持多种资源管理器,常见的有 standalone/yarn/k8s/mesos,其中 mesos 目前已经 deprecated 了;
  • spark deploy mode: spark部署模式:当用户(或框架)提交 spark 应用程序时(从client 客户端提交),上述 driver 角色可以运行在客户端进程中,也可以运行在从资源管理器申请获得的资源中启动的 jvm 进程中,前者被 spark 称为 client 模式,而后者被 spark 称为 cluster 模式;
  • 用户可以在 spark-defaults.conf 等配置文件中,通过参数 spark.submit.deployMode 指定具体的部署模式;
  • 用户也可以在使用 spark-sumbmit 脚本提交 spark 作业时,通过参数 --deploy-mode,指定具体的部署模式;
  • Spark is agnostic to the underlying cluster manager. As long as it can acquire executor processes, and these communicate with each other, it is relatively easy to run it even on a cluster manager that also supports other applications (e.g. Mesos/YARN/Kubernetes).
  • Deploy mode: Distinguishes where the driver process runs. In “cluster” mode, the framework launches the driver inside of the cluster. In “client” mode, the submitter launches the driver outside of the cluster.(Whether to deploy your driver on the worker nodes (cluster) or locally as an external client (client),default: client);
  • spark.submit.deployMode:The deploy mode of Spark driver program, either “client” or “cluster”, Which means to launch driver program locally (“client”) or remotely (“cluster”) on one of the nodes inside the cluster;

2. hive on spark 使用的是 yarn client 模式还是 yarn cluster 模式?

  • hive 作为跟 hadoop 紧密耦合的的一个重要组件,其调度运行作业使用的资源管理器,就是 yarn;
  • hive 支持多种计算引擎,常见的有 mr/spark/tez,可以通过 set hive.execution.engine = mr/spark/tez 进行配置;
  • 当 hive 应用使用 spark 引擎运行时,我们称之为 hive on spark;相对应地,当 spark 应用访问 hvie 数据源时,我们称之为 spark on hive;
  • hive on spark 作业运行时,用户并没有明确指定部署模式,此时 hive on spark 作业,使用的是 client 模式还是 cluster 模式呢?
  • 查看 hs2 源码可知,hive on spark 作业,是 hs2 进程作为 spark 客户端,通过调用 spark-submit 脚本提交的,而 spark 相关的配置参数,有一部分是用户通过 spark-defaults.conf 配置的,也有一部分是 hs2 代码写死了的配置;
  • 查看 hs2 日志,可以看到动态生称的配置文件,比如 run/cloudera-scm-agent/process/5666-hive-HIVESERVER2/spark-defaults.conf,其中明确指定了spark.master=yarn, 而该配置文件中 spark.submit.deployMode 的值,取决于 spark-defaults.conf中的配置;
    image
    image
    image
  • 更进一步,在 beeline 中,通过命令 “set spark.submit.deployMode” 查看可知,hive on spark 的 deployMode 固定为 cluster,无论 spark-defauls.conf 中 spark.submit.deployMode 配置如何;
  • 更进一步,在 beeline 中,通过命令 “set spark.submit.deployMode=client” 手动指定 hive on spark 的deployMode 为 client ,然后提交 hive on spark 作业,则这些作业会因为 spark jvm 进程启动失败而报错;
    image
    综上所述:
  • hive on spark 模式下,hs2 承载了 spark 客户端的角色,hs2 通过 spark-submit脚本提交 spark 作业;
  • 无论用户如何配置 spark-defaults.conf, hive on spark 固定使用的都是 yarn cluster 模式;
  • 如果用户在 beeline 中,通过命令 “set spark.submit.deployMode=client” 手动指定 hive on spark 的deployMode 为 client 后,则此后提交的 hive on spark 作业会因为 spark jvm 进程启动失败而报错;
  • hs2 中,hive on spark 的两个核心的相关源码类是:org.apache.hive.spark.client.SparkClientImpl/org.apache.hive.spark.client.RemoteDriver;
  • 通过命令 “set spark.submit.deployMode=client” 手动指定 hive on spark 的deployMode 为 client 后, hive on spark 作业 失败的日志如下:
ERROR : FAILED: Execution Error, return code 30041 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. Failed to create Spark client for Spark session 256f3dc9-c1a3-49f3-be2c-9ab81a8dd518_1: java.lang.RuntimeException: spark-submit process failed with exit code 1 and error "Error: Could not create the Java Virtual Machine.","Error: A fatal exception has occurred. Program will exit."
INFO  : Completed executing command(queryId=hive_20240620154413_1ad26fe2-f2d5-4252-a609-b3b8d4ce2822); Time taken: 0.517 seconds
Error: Error while processing statement: FAILED: Execution Error, return code 30041 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. Failed to create Spark client for Spark session 256f3dc9-c1a3-49f3-be2c-9ab81a8dd518_1: java.lang.RuntimeException: spark-submit process failed with exit code 1 and error "Error: Could not create the Java Virtual Machine.","Error: A fatal exception has occurred. Program will exit." (state=42000,code=30041)
  • hs2 动态生成的 spark-default.conf,以及 hs2中启动 hive on spark 作业的相关日志,如下:
# hive on spark 相关配置-/run/cloudera-scm-agent/process/5666-hive-HIVESERVER2/spark-defaults.conf 包含:
spark.master=yarn
spark.submit.deployMode=cluster
spark.authenticate=true
spark.driver.log.dfsDir=/user/spark/driverLogs
spark.driver.log.persistToDfs.enabled=true
spark.dynamicAllocation.enabled=true
spark.dynamicAllocation.executorIdleTimeout=60
spark.dynamicAllocation.minExecutors=1
spark.dynamicAllocation.schedulerBacklogTimeout=1
spark.eventLog.enabled=true
spark.io.encryption.enabled=false
spark.network.crypto.enabled=false
spark.serializer=org.apache.spark.serializer.KryoSerializer
spark.shuffle.service.enabled=true
spark.shuffle.service.port=7337
spark.ui.enabled=true
spark.ui.killEnabled=true
spark.lineage.log.dir=/var/log/spark/lineage
spark.lineage.enabled=true
spark.eventLog.dir=hdfs://ns1/user/spark/applicationHistory
spark.yarn.historyServer.address=http://uf30-3:18088
spark.yarn.jars=local:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/spark/jars/*,local:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/spark/hive/*
spark.driver.extraLibraryPath=/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/hadoop/lib/native
spark.executor.extraLibraryPath=/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/hadoop/lib/native
spark.yarn.am.extraLibraryPath=/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/hadoop/lib/native
spark.yarn.config.gatewayPath=/opt/cloudera/parcels
spark.yarn.config.replacementPath={{HADOOP_COMMON_HOME}}/../../..
spark.yarn.historyServer.allowTracking=true
spark.yarn.appMasterEnv.MKL_NUM_THREADS=1
spark.executorEnv.MKL_NUM_THREADS=1
spark.yarn.appMasterEnv.OPENBLAS_NUM_THREADS=1
spark.executorEnv.OPENBLAS_NUM_THREADS=1
spark.extraListeners=com.cloudera.spark.lineage.NavigatorAppListener
spark.sql.queryExecutionListeners=com.cloudera.spark.lineage.NavigatorQueryListener

# hs2中,hive on spark 相关日志:
2024-06-20 09:43:30,902 INFO  org.apache.hive.spark.client.SparkClientImpl: [HiveServer2-Background-Pool: Thread-151785]: Loading spark defaults configs from: file:/run/cloudera-scm-agent/process/5666-hive-HIVESERVER2/spark-defaults.conf
2024-06-20 09:43:30,908 INFO  org.apache.hive.spark.client.SparkClientImpl: [HiveServer2-Background-Pool: Thread-151785]: Running client driver with argv: /opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/lib/spark/bin/spark-submit --executor-cores 4 --executor-memory 2147483648b --principal hive/uf30-1@CDH.COM --keytab hive.keytab --jars /opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/hive-kryo-registrator-2.1.1-cdh6.3.2.jar --properties-file /tmp/spark-submit.6442647368541171349.properties --class org.apache.hive.spark.client.RemoteDriver /opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/hive-exec-2.1.1-cdh6.3.2.jar --remote-host uf30-1 --remote-port 54208 --remote-driver-conf hive.spark.client.future.timeout=60000 --remote-driver-conf hive.spark.client.connect.timeout=1000 --remote-driver-conf hive.spark.client.server.connect.timeout=900000 --remote-driver-conf hive.spark.client.channel.log.level=null --remote-driver-conf hive.spark.client.rpc.max.size=52428800 --remote-driver-conf hive.spark.client.rpc.threads=8 --remote-driver-conf hive.spark.client.secret.bits=256 --remote-driver-conf hive.spark.client.rpc.server.address=null --remote-driver-conf hive.spark.client.rpc.server.port=null
2024-06-20 09:43:31,887 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: Warning: Ignoring non-spark config property: hive.spark.client.server.connect.timeout=900000
2024-06-20 09:43:31,887 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: Warning: Ignoring non-spark config property: hive.spark.client.rpc.threads=8
2024-06-20 09:43:31,887 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: Warning: Ignoring non-spark config property: hive.spark.client.future.timeout=60000
2024-06-20 09:43:31,887 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: Warning: Ignoring non-spark config property: hive.spark.client.connect.timeout=1000
2024-06-20 09:43:31,887 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: Warning: Ignoring non-spark config property: hive.spark.client.secret.bits=256
2024-06-20 09:43:31,888 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: Warning: Ignoring non-spark config property: hive.spark.client.rpc.max.size=52428800
2024-06-20 09:43:32,059 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:32 WARN spark.SparkConf: The configuration key 'spark.yarn.executor.memoryOverhead' has been deprecated as of Spark 2.3 and may be removed in the future. Please use the new key 'spark.executor.memoryOverhead' instead.
2024-06-20 09:43:32,059 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:32 WARN spark.SparkConf: The configuration key 'spark.yarn.driver.memoryOverhead' has been deprecated as of Spark 2.3 and may be removed in the future. Please use the new key 'spark.driver.memoryOverhead' instead.
2024-06-20 09:43:33,044 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:33 INFO yarn.Client: Kerberos credentials: principal = hive/uf30-1@CDH.COM, keytab = hive.keytab
2024-06-20 09:43:33,531 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:33 INFO client.ConfiguredRMFailoverProxyProvider: Failing over to rm71
2024-06-20 09:43:33,585 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:33 INFO yarn.Client: Requesting a new application from cluster with 3 NodeManagers
2024-06-20 09:43:33,698 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:33 INFO conf.Configuration: resource-types.xml not found
2024-06-20 09:43:33,698 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:33 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
2024-06-20 09:43:33,719 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:33 INFO yarn.Client: Verifying our application has not requested more than the maximum memory capability of the cluster (20480 MB per container)
2024-06-20 09:43:33,720 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:33 INFO yarn.Client: Will allocate AM container, with 2560 MB memory including 512 MB overhead
2024-06-20 09:43:33,720 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:33 INFO yarn.Client: Setting up container launch context for our AM
2024-06-20 09:43:33,724 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:33 INFO yarn.Client: Setting up the launch environment for our AM container
2024-06-20 09:43:33,745 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:33 INFO yarn.Client: Preparing resources for our AM container
2024-06-20 09:43:33,805 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:33 INFO yarn.Client: To enable the AM to login from keytab, credentials are being copied over to the AM via the YARN Secure Distributed Cache.
2024-06-20 09:43:33,810 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:33 INFO yarn.Client: Uploading resource file:/run/cloudera-scm-agent/process/5666-hive-HIVESERVER2/hive.keytab -> hdfs://ns1/user/hive/.sparkStaging/application_1716544959017_1620/hive.keytab
2024-06-20 09:43:34,091 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:34 INFO yarn.Client: Uploading resource file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/hive-exec-2.1.1-cdh6.3.2.jar -> hdfs://ns1/user/hive/.sparkStaging/application_1716544959017_1620/hive-exec-2.1.1-cdh6.3.2.jar
2024-06-20 09:43:34,434 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:34 INFO yarn.Client: Uploading resource file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/hive-kryo-registrator-2.1.1-cdh6.3.2.jar -> hdfs://ns1/user/hive/.sparkStaging/application_1716544959017_1620/hive-kryo-registrator-2.1.1-cdh6.3.2.jar
2024-06-20 09:43:34,771 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:34 INFO yarn.Client: Uploading resource file:/tmp/spark-6592d710-76fe-4804-9e14-6fa37e26747c/__spark_conf__4167604981797776583.zip -> hdfs://ns1/user/hive/.sparkStaging/application_1716544959017_1620/__spark_conf__.zip
2024-06-20 09:43:34,852 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:34 INFO spark.SecurityManager: Changing view acls to: hive
2024-06-20 09:43:34,853 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:34 INFO spark.SecurityManager: Changing modify acls to: hive
2024-06-20 09:43:34,854 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:34 INFO spark.SecurityManager: Changing view acls groups to: 
2024-06-20 09:43:34,855 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:34 INFO spark.SecurityManager: Changing modify acls groups to: 
2024-06-20 09:43:34,856 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:34 INFO spark.SecurityManager: SecurityManager: authentication enabled; ui acls disabled; users  with view permissions: Set(hive); groups with view permissions: Set(); users  with modify permissions: Set(hive); groups with modify permissions: Set()
2024-06-20 09:43:34,893 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:34 INFO conf.HiveConf: Found configuration file file:/etc/hive/conf.cloudera.hive/hive-site.xml
2024-06-20 09:43:35,013 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO security.YARNHadoopDelegationTokenManager: Attempting to login to KDC using principal: hive/uf30-1@CDH.COM
2024-06-20 09:43:35,017 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO security.YARNHadoopDelegationTokenManager: Successfully logged into KDC.
2024-06-20 09:43:35,028 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO security.HadoopFSDelegationTokenProvider: getting token for: DFS[DFSClient[clientName=DFSClient_NONMAPREDUCE_-350949835_1, ugi=hive/uf30-1@CDH.COM (auth:KERBEROS)]] with renewer yarn/uf30-1@CDH.COM
2024-06-20 09:43:35,056 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO hdfs.DFSClient: Created token for hive: HDFS_DELEGATION_TOKEN owner=hive/uf30-1@CDH.COM, renewer=yarn, realUser=, issueDate=1718847815048, maxDate=1719452615048, sequenceNumber=489988, masterKeyId=1416 on ha-hdfs:ns1
2024-06-20 09:43:35,059 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO security.HadoopFSDelegationTokenProvider: getting token for: DFS[DFSClient[clientName=DFSClient_NONMAPREDUCE_-350949835_1, ugi=hive/uf30-1@CDH.COM (auth:KERBEROS)]] with renewer hive/uf30-1@CDH.COM
2024-06-20 09:43:35,060 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO hdfs.DFSClient: Created token for hive: HDFS_DELEGATION_TOKEN owner=hive/uf30-1@CDH.COM, renewer=hive, realUser=, issueDate=1718847815056, maxDate=1719452615056, sequenceNumber=489989, masterKeyId=1416 on ha-hdfs:ns1
2024-06-20 09:43:35,106 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO security.HadoopFSDelegationTokenProvider: Renewal interval is 86400044 for token HDFS_DELEGATION_TOKEN
2024-06-20 09:43:35,168 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 WARN conf.HiveConf: HiveConf of name hive.enforce.bucketing does not exist
2024-06-20 09:43:35,206 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO yarn.Client: Submitting application application_1716544959017_1620 to ResourceManager
2024-06-20 09:43:35,456 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO impl.YarnClientImpl: Submitted application application_1716544959017_1620
2024-06-20 09:43:35,461 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO yarn.Client: Application report for application_1716544959017_1620 (state: ACCEPTED)
2024-06-20 09:43:35,468 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO yarn.Client: 
2024-06-20 09:43:35,469 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]:      client token: Token { kind: YARN_CLIENT_TOKEN, service:  }
2024-06-20 09:43:35,469 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]:      diagnostics: AM container is launched, waiting for AM container to Register with RM
2024-06-20 09:43:35,469 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]:      ApplicationMaster host: N/A
2024-06-20 09:43:35,469 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]:      ApplicationMaster RPC port: -1
2024-06-20 09:43:35,469 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]:      queue: root.users.dap
2024-06-20 09:43:35,469 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]:      start time: 1718847815223
2024-06-20 09:43:35,469 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]:      final status: UNDEFINED
2024-06-20 09:43:35,469 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]:      tracking URL: http://uf30-3:8088/proxy/application_1716544959017_1620/
2024-06-20 09:43:35,469 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]:      user: hive
2024-06-20 09:43:35,474 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO util.ShutdownHookManager: Shutdown hook called
2024-06-20 09:43:35,476 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-c92c59a3-55ce-4aa1-9463-6ed42b4ddd99
2024-06-20 09:43:35,481 INFO  org.apache.hive.spark.client.SparkClientImpl: [spark-submit-stderr-redir-HiveServer2-Background-Pool: Thread-151785]: 24/06/20 09:43:35 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-6592d710-76fe-4804-9e14-6fa37e26747c
2024-06-20 09:43:35,865 INFO  org.apache.hive.spark.client.SparkClientImpl: [Driver]: Child process (spark-submit) exited successfully.
2024-06-20 09:43:40,157 INFO  org.apache.hive.spark.client.SparkClientImpl: [HiveServer2-Background-Pool: Thread-151785]: Successfully connected to Remote Spark Driver at: uf30-1:38642
2024-06-20 09:43:48,053 INFO  org.apache.hive.spark.client.SparkClientImpl: [Spark-Driver-RPC-Handler-0]: Received Spark job ID: 0 for client job c111431c-5a57-4bb4-9357-07d0e5948d79

3 hive on spark 常见问题

  • 问题现象:部分 HIVE ON SPARK 作业报错失败,但重试有时候又能够成功,客户端报错: java.sql.SQLException…failed to create spark client for spark session xxx: java.util.concurrent.TimeoutException: client xxx timed out waiting for connection from the remote spark driver.
  • 问题日志:hiveserver2 日志:“timed out waiting for remote spark driver to connect to hiveserver2. possible reasons include network issues, errors in remote driver, cluster has no available resources etc. please check yarn or spark driver;s logs for further information.”
  • 问题日志:yarn 日志:container exited with a non-zero exit code 13. Error file: prelaunch.err. …java.util.concurrent.ExecutionException:javax.security.sasl.saslException: client closed before SASL negotiation finished.
  • 问题原因:大量 HIVE ON SPARK 作业并发提交时, yarn 中对应队列上没有足够资源启动 spark 集群了,或者 hiveserver2/yarn/kdc 在高并发下的性能问题,造成了超时;
  • 问题解决:业务侧可以减少并发调度的作业数,或者调小申请的spark资源的大小(spark.driver.memory/spark.executor.memory/spark.executor.cores 等);服务端可以增大对应队列的资源,也可以同步调大服务端超时参数以缓解问题,注意该超时参数 hive.spark.client.server.connect.timeout 需要在服务端更改并重启服务端才能生效,客户端更改时不会报错但是不会生效;
  • 另外如有必要,需要同步更改黑白名单参数:hive.conf.restricted.list/hive.security.authorization.sqlstd.confwhitelist/hive.security.authorization.sqlstd.confwhitelist.append);
  • 相关参数:
服务端参数 hive.spark.client.server.connect.timeout:默认90秒:Timeout for handshake between Hive client and remote Spark driver.  Checked by both processes.
服务端参数 hive.spark.client.future.timeout: 默认 60秒:Timeout for requests from Hive client to remote Spark driver.
客户端参数 hive.spark.client.connect.timeout:默认一秒:Timeout for remote Spark driver in connecting back to Hive client

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1844961.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

opencascade AIS_InteractiveContext源码学习3 highlighting management 对象高亮管理

AIS_InteractiveContext 前言 交互上下文(Interactive Context)允许您在一个或多个视图器中管理交互对象的图形行为和选择。类方法使这一操作非常透明。需要记住的是,对于已经被交互上下文识别的交互对象,必须使用上下文方法进行…

TugraphDB:探索图数据库新境界

TugraphDB:释放图数据的全部潜能- 精选真开源,释放新价值。 概览 TugraphDB是支付宝背后的分布式图数据库。该项目是由蚂蚁集团和清华大学共同研发的高性能分布式图数据库,支持事务处理、TB 级大容量、低延迟查找和快速图分析等功能。专为处…

安卓系统安装linux搭建随手服务器termux平替软件介绍

引言 旧手机丢可惜,可以用ZeroTermux(一款代替termux)的超级终端,来模拟Linux(甚至你可以模拟Win,只要性能够用) ps:此软件只是termux的增强版,相当于增加右边菜单&…

第N5周:调用Gensim库训练Word2Vec模型

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制🚀 文章来源:K同学的学习圈子 目录 本周任务: 1.安装Gensim库 2.对原始语料分词 3.停用词 4.训练Woed2Vec模型 …

单阶段目标检测--NMS

目录 一、概念: 二、算法过程 三、代码实现 一、概念: 在目标检测的初始结果中,同一个物体,可能对应有多个边界框 (bounding box,bb),这些边界框通常相互重叠。如何从中选择一个最合适 的(也就…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 披萨大作战(100分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 &#x1f…

1 UC

1 UC 1、环境变量2、环境变量表3、错误处理4、库文件4.1 静态库4.2 动态库4.3 动态库的动态加载 5、虚拟地址 1、环境变量 什么是环境变量? 每个进程都有一张自己的环境变量表,表中的每个条目都是形如“键值”形式的环境变量。进程可以通过环境变量访问…

opencascade AIS_InteractiveContext源码学习4 object local transformation management

AIS_InteractiveContext 前言 交互上下文(Interactive Context)允许您在一个或多个视图器中管理交互对象的图形行为和选择。类方法使这一操作非常透明。需要记住的是,对于已经被交互上下文识别的交互对象,必须使用上下文方法进行…

数据结构4---串

一、字符串暴力匹配 要注意的就是i与j的回溯&#xff0c;通过不断移动主串的指针&#xff0c;时间复杂度高 #include <stdio.h> #include <stdlib.h>typedef struct String {char* data;int len; }String;String* initString() {String* s (String*)malloc(sizeo…

分布式理论与设计 四、分布式系统设计策略

在分布式环境下&#xff0c;有几个问题是普遍关心的&#xff1a; 如何检测当前节点还活着&#xff1f;如何保障高可用&#xff1f;容错处理负载均衡 1.心跳检测 在分布式环境中&#xff0c;我们提及过存在非常多的节点&#xff08;Node&#xff09;。那么就有一个非常重要的…

c++ 编译过程杂记等

开篇一张图。 编译器 把我们的代码翻译成机器语言 ​ gcc编译程序的过程 gcc编译程序主要经过四个过程&#xff1a; 四个过程说明&#xff1a; ​ 预处理实际上是将头文件、宏进行展开。 编译阶段&#xff0c;gcc调用不同语言的编译器&#xff0c;例如c语言调用编译器ccl…

OpenTenBase入门

什么是OpenTenBase OpenTenBase 是一个提供写可靠性&#xff0c;多主节点数据同步的关系数据库集群平台。你可以将 OpenTenBase 配置一台或者多台主机上&#xff0c; OpenTenBase 数据存储在多台物理主机上面。数据表的存储有两种方式&#xff0c; 分别是 distributed 或者 re…

Android Studio main,xml 视图代码转换

Android Studio main,xml 视图&&代码转换 其实很简单,但是对我们小白来说还是比较蒙的。 废话不多说,直接上图。 我的Android Studio 是 4.0 版的 我刚打开是这个界面,在我想学习如何用代码来布局,可能大家也会找不见代码的位置。 follow me 是不是感觉很简单呢。…

使用Python和BeautifulSoup轻松抓取表格数据

你是否曾经希望可以轻松地从网页上获取表格数据&#xff0c;而不是手动复制粘贴&#xff1f;好消息来了&#xff0c;使用Python和BeautifulSoup&#xff0c;你可以轻松实现这一目标。今天&#xff0c;我们将探索如何使用这些工具抓取中国气象局网站(http://weather.cma.cn)上的…

使用fastapi和pulumi搭建基于Azure云的IAC Restful API服务 — 对外发布

前言 在IAC&#xff08;即Infrastructure As Code&#xff0c;基础设施即代码&#xff09;领域&#xff0c;Terraform 是一个老牌工具&#xff0c;使用HCL&#xff08;HashiCorp Configuration Language&#xff09;语言来编写配置文件。它支持几乎所有主流的云提供商&#xf…

贝锐蒲公英异地组网方案:实现制药设备远程监控、远程运维

公司业务涉及放射性药品的生产与销售&#xff0c;在全国各地拥有20多个分公司。由于药品的特殊性&#xff0c;在日常生产过程中&#xff0c;需要符合药品监管规范要求&#xff0c;对各个分部的气相、液相设备及打印机等进行监管&#xff0c;了解其运行数据及工作情况。 为满足这…

[极客大挑战 2020]Roamphp4-Rceme

rce,rce,rce!!! 右键源代码里给了提示&#xff0c;有备份文件index.php.swp,大伙都做到这来了&#xff0c;应该不用写了吧。看源码 <?php error_reporting(0); session_start(); if(!isset($_SESSION[code])){$_SESSION[code] substr(md5(mt_rand().sha1(mt_rand)),0,5);…

电脑上使用备忘录怎么查看编辑时间?能显示时间的备忘录

在快节奏的生活中&#xff0c;很多人喜欢使用备忘录来记录日常事项和重要信息。备忘录不仅能帮助我们捕捉灵感&#xff0c;还能确保重要任务不被遗漏。然而&#xff0c;有时候我们需要知道某条记录的编辑时间&#xff0c;以便于回溯和整理信息。如果备忘录不能显示编辑时间&…

matplotlib 做饼图

饼图可以很好地帮助用户快速了解整体市场数据的占比分配 import matplotlib.pyplot as pltexplode (0,0.1,0,0) labels Frogs,Hogs,Dogs,Logs sizes [15, 30, 45, 10] fig,ax plt.subplots() # colors 设置图形颜色 ;pctdistance&#xff1a;设置百分比标签与圆心的距离&am…

【配置】Notion自动化备份到github方案

步骤 打开notion网页&#xff0c;获取到需要的值 token_v2 找到请求getSpaces的 Cookie 值 token_v2 space_id 找到请求getSpaces的响应结果space,如下图&#xff1a; file_token 找个页面点击导出&#xff0c;之后拿到这个配置项 注意&#xff1a;配置项会过期&#xff0c…