【AI大模型】基于ChatGLM-6b从零开始本地部署语言模型,步骤详细无坑版

news2025/1/17 1:04:51
1.什么是ChatGLM-6B

ChatGLM-6B 是的一种自然语言处理模型,属于大型生成语言模型系列的一部分。"6B"在这里指的是模型大约拥有60亿个参数,这些参数帮助模型理解和生成语言。ChatGLM-6B 特别设计用于对话任务,能够理解和生成自然、流畅的对话文本。 这个模型通过大量的文本数据进行训练,学习如何预测和生成语言中的下一个词,从而能够参与到各种对话场景中。它可以用于多种应用,比如聊天机器人、自动回复系统和其他需要语言理解的技术中,ChatGLM-6B 的能力取决于它的训练数据和具体的实现方式,通常能够处理复杂的语言任务,提供有用和合理的回复。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

##### 2.开源仓库
  • ChatGLM的github地址如下

    • https://github.com/THUDM/ChatGLM-6B
    • 有非常详细的文档介绍

    在这里插入图片描述

    在这里插入图片描述

2.1硬件要求

在这里插入图片描述

在这里插入图片描述

3.模型运行环境搭建
  • python环境

    • 建议使用Anaconda方便对管理相关的库进行python环境的隔离
    • 版本要求:为了避免一些千奇百怪的兼容错误,版本要求大于3.10
  • conda创建虚拟环境

    • conda create -n chatglm-6b python==3.10.4
    • conda activate chatglm-6b

    在这里插入图片描述

    在这里插入图片描述

    • ChatGLM-6B代码下载
      • 使用git命令进行代码拉取
      • git clone https://github.com/THUDM/ChatGLM-6B.git
      • 进入到下载好的文件目录,下载相关依赖
      • pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
      • pip install -i https://pypi.tuna.tsinghua.edu.cn/simple streamlit
      • pip install -i https://pypi.tuna.tsinghua.edu.cn/simple streamlit-chat
      • 环境隔离之后,这里的版本不影响其他项目的依赖版本,这里需要注意,每一个版本严格按照要求下载,否则容易出错
4. 模型下载
  • 代码由 transformers 自动下载模型实现和参数。完整的模型实现可以在 Hugging Face Hub。如果你的网络环境较差,下载模型参数可能会花费较长时间甚至失败。此时可以先将模型下载到本地,然后从本地加载。
  • 从 Hugging Face Hub 下载模型需要先安装Git LFS ,然后运行

代码语言:javascript

复制

git clone https://huggingface.co/THUDM/chatglm-6b
  • Git LFS安装 -> https://docs.github.com/zh/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
  • 将模型下载到本地之后,上代码中的 THUDM/chatglm-6b 替换为你本地的 chatglm-6b 文件夹的路径,即可从本地加载模型。

在这里插入图片描述

在这里插入图片描述

5.模型调用
5.1 代码调用

代码语言:javascript

复制

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
#macbook需要调用mps后端
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().to('mps')
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)
你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。
如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)

model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()

#代码解释
AutoTokenizer.from_pretrained():
AutoTokenizer.from_pretrained() 方法用于加载一个预训练的tokenizer,这个tokenizer负责将文本输入转化为模型可以理解的数值形式(即tokens)。它从指定的本地路径加载tokenizer配置和数据。
参数"THUDM/chatglm-6b" 指的是tokenizer存储的目录。
trust_remote_code=True 是一个安全选项,当你信任你正在加载的代码时可以设置为True,它允许执行加载过程中可能会运行的远程或自定义代码。
AutoModel.from_pretrained():
AutoModel.from_pretrained() 方法用于加载预训练的模型。这个模型能够根据输入的tokens进行处理并输出结果。
同样地,模型是从指定的本地路径加载的。
trust_remote_code=True 允许加载自定义代码。
.half():
.half() 方法用于将模型的数据类型转换为半精度浮点数(Float16)。这通常用于减少模型在显存中占用的空间,从而可以加快计算速度,尤其是在支持半精度计算的GPU上。
.to('mps'):
.to('mps') 方法是将模型移动到一个特定的设备上运行,这里是指Apple的Metal Performance Shaders (MPS)MPS是Apple为MacOS设备上的机器学习和深度学习提供支持的后端,可以利用Apple硬件的优势提高性能
  • 如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)

代码语言:javascript

复制

model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
5.2 web页面调用
  • 运行 streamlit run web_demo2.py 可直接进行web页面的对话

  • 或者直接运行web_demo.py文件 使用 gradio

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1844706.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux 软链接

# 语法 ln -s <文件夹or文件的真实路径> <自定义路径别名> # 例子 ln -s /etc/sysconfig/network-scripts/ifcfg-ens33 ~/ens33

Android集成mapbox教程

目录 简介准备工作创建Token系统开发简介 Mapbox是来自美国的一家为开发者提供地图服务和开发工具的开放平台。Mapbox以开源的形式构建了矢量瓦片技术生态,开发了矢量切片工具、瓦片服务传输框架。Mapbox的底图平台非常受欢迎,特别是开发者和学生群体,可以使用免费的开源软…

matlab结合python的CoolProp库来进行热泵热循环仿真

前言 需要安装python&#xff0c;不同matlab版本需要下载对用的python版本&#xff01;&#xff01;&#xff01;&#xff01;&#xff0c;切记&#xff01;&#xff01;&#xff01;&#xff01;否则程序无法运行&#xff0c;下图是展示了matlab和python之间的版本对应 安装…

数据分析思考

数据分析工作流程 在我的数据分析职业发展过程中&#xff0c;我从基础的数据提取工作开始&#xff0c;逐步深入到更为复杂和具有战略意义的领域。这包括构建和完善指标体系、设计风险预警模型&#xff0c;以及与多部门协作完成公司整体经营分析等工作。 在这个过程中&#xf…

会声会影2024旗舰版汉化最新安装包下载方法步骤

嗨&#xff0c;亲爱的CSDN的朋友们&#xff01;&#x1f389;今天&#xff0c;我要跟大家分享一款让你的视频编辑体验升级的神器——会声会影2024最新版本&#xff01;✨如果你是一个热衷于创作视频内容的创作者&#xff0c;那么你一定不能错过这个软件。它不仅功能强大&#x…

为什么企业需要数据挖掘平台?哪个比较好呢?

什么是数据挖掘&#xff1f; 数据挖掘就是从大量的数据中去发现有用的信息&#xff0c;然后根据这些信息来辅助决策。听起来是不是跟传统的数据分析很像呢&#xff1f;实际上&#xff0c;数据挖掘就是智能化的数据分析&#xff0c;它们的目标都是一样的。但是&#xff0c…

前端面试js高频手写大全

res.push(fn(arr[i])) } return res } 3. reduce实现数组的map方法 Array.prototype.myMap function(fn,thisValue){ var res []; thisValue thisValue||[]; this.reduce(function(pre,cur,index,arr){ return res.push(fn.call(thisValue,cur,index,arr)); },[])…

【复旦邱锡鹏教授《神经网络与深度学习公开课》笔记】

卷积经常用在信号处理中&#xff0c;用于计算信号的延迟累积。假设一个信号发射器每个时刻 t t t产生一个信号 x t x_t xt​&#xff0c;其信息的衰减率为 w k w_k wk​&#xff0c;即在 k − 1 k-1 k−1个时间步长后&#xff0c;信息为原来的 w k w_k wk​倍&#xff0c;时刻 …

PMBOK® 第六版 指导与管理项目工作

目录 读后感—PMBOK第六版 目录 我们都不情愿去做重复的工作&#xff0c;也不期望只得到一个计划&#xff0c;而具体的工作任务却笼统模糊&#xff0c;需要在做的过程中一边摸索。如此一来&#xff0c;对于熟悉的事情会因反复而影响心态&#xff0c;对于不熟悉的事情则由于痛苦…

在SQL中使用explode函数展开数组的详细指南

目录 简介示例1&#xff1a;简单数组展开示例2&#xff1a;展开嵌套数组示例3&#xff1a;与其他函数结合使用处理结构体数组示例&#xff1a;展开包含结构体的数组示例2&#xff1a;展开嵌套结构体数组 总结 简介 在处理SQL中的数组数据时&#xff0c;explode函数非常有用。它…

pytorch十大核心操作

PyTorch的十大核心操作涵盖了张量创建、数据转换、操作变换等多个方面。以下是结合参考文章信息整理出的PyTorch十大核心操作的概述&#xff1a; 张量创建&#xff1a; 从Python列表或NumPy数组创建张量。使用特定值创建张量&#xff0c;如全零、全一、指定范围、均匀分布、正…

AI与区块链的融合:Web3时代下的新应用探索

本文来源香港Web3媒体Techub News AI与区块链&#xff1a;Web3时代的新机遇 在香港这座金融与科技交汇的繁荣都市&#xff0c;AI与区块链的结合已经成为Web3时代的重要议题&#xff0c;为行业发展带来了新的可能性和机遇。越来越多的开发者正在积极探索这一领域的融合&#xff…

FlinkCDC 3.1.0 与 Flink 1.18.0 安装及使用 Mysql To Doris 整库同步,使用 pipepline连接器

cd flink-cdc-3.1.0 bin/flink-cdc.sh 会用到 linux的系统环境变量&#xff08;vim /etc/profile配置&#xff09;&#xff0c;使用环境变量 FLINK_HOME flinkcdc & flink 安装及使用&#xff1a; 1、flink-cdc-3.1.0/lib/ 内容如下&#xff1a; 2、flink-cdc-3.1.0/mysql…

win10免安装配置MySQL8.4.0

注&#xff1a;此教程基于win10 22H2 版本 1、下载最新版本MySQL压缩包 下载链接&#xff1a;MySQL官网下载地址 点击第二行的 ZIP Archive 后面的Download&#xff08;当前时间2024-06-19最新版本是8.4.0&#xff09; 2、解压并添加配置文件 下载完毕后&#xff0c;解压缩…

Ncorr使用过程的问题解答

问题系列 文章目录 问题系列前言一、如何更改单位&#xff1f;情景&#xff1a;DIC Analysis 二、拉格兰日和欧拉绘图的区别直观 三、控制图像中的显示条上下界限问题展示&#xff1a;解决方案&#xff1a; 更新动态 前言 主要用于记录使用过程中出现的相关问题。 一、如何更改…

k8s中 docker和containerd 镜像相互导入导出

containerd镜像导出并导入docker 1 查看containerd 本地镜像列表 crictl images 2 containerd 导出本地镜像到当前目录下&#xff08;注意&#xff1a; 导出导入需要指定镜像平台类型 --platform&#xff09; ctr -n k8s.io images export nacos-server-24-06-30-13-02-…

【尚庭公寓SpringBoot + Vue 项目实战】移动端登录管理(二十)

【尚庭公寓SpringBoot Vue 项目实战】移动端登录管理&#xff08;二十&#xff09; 文章目录 【尚庭公寓SpringBoot Vue 项目实战】移动端登录管理&#xff08;二十&#xff09;1、登录业务2、接口开发2.1、获取短信验证码2.2、登录和注册接口2.3、查询登录用户的个人信息 1、…

SFF1006A-ASEMI无人机专用SFF1006A

编辑&#xff1a;ll SFF1006A-ASEMI无人机专用SFF1006A 型号&#xff1a;SFF1006A 品牌&#xff1a;ASEMI 封装&#xff1a;TO-220F 最大平均正向电流&#xff08;IF&#xff09;&#xff1a;10A 最大循环峰值反向电压&#xff08;VRRM&#xff09;&#xff1a;600V 最大…

react实现窗口悬浮框,可拖拽、折叠、滚动

1、效果如下 2、如下两个文件不需要修改 drag.js import React from "react"; import PropTypes from "prop-types";export default class DragM extends React.Component {static propTypes {children: PropTypes.element.isRequired};static defaultP…

神经网络 #数据挖掘 #Python

神经网络是一种受生物神经元系统启发的人工计算模型&#xff0c;用于模仿人脑的学习和决策过程。它由大量互相连接的节点&#xff08;称为神经元&#xff09;组成&#xff0c;这些节点处理和传递信息。神经网络通常包含输入层、隐藏层&#xff08;可有多个&#xff09;和输出层…