【云原生】Kubernetes----Metrics-Server组件与HPA资源

news2024/12/31 2:10:19

目录

引言

一、概述

(一)Metrics-Server简介

(二)Metrics-Server的工作原理

(三)HPA与Metrics-Server的作用

(四)HPA与Metrics-Server的关系

(五)HPA与Metrics-Server的重要性

二、部署metrics-server组件

(一)镜像获取

1.本地上传镜像包

2.GitHub下载

3.国内云下载

(二)安装metrics-server组件

1.获取yaml文件

2.修改文件内容

3.创建资源

4.验证是否安装成功

三、部署HPA

(一)创建deployment

(二)创建HPA资源

(三)进行压测

四、命名空间的资源限制

(一)创建命名空间

(二)对资源数量的限制

(三)对资源配额的限制


引言

在Kubernetes集群中,为了确保资源的有效利用和应用的高可用性,我们通常需要监控集群中各个Pod的资源使用情况,并根据这些信息进行相应的调整。Horizontal Pod Autoscaler (HPA) 就是这样一种机制,它可以根据Pod的资源使用情况自动调整Pod的副本数量。而Metrics-Server,作为Kubernetes的一个核心组件,为HPA提供了关键的度量数据支持。本文将详细解析Metrics-Server与HPA之间的关系、工作原理以及它们在实际应用中的重要性

一、概述

(一)Metrics-Server简介

Metrics-Server是Kubernetes的一个附加组件,用于收集集群中各个资源的度量数据,如CPU、内存等。这些数据通过Kubernetes API Server暴露给外部用户或组件,以供它们进行决策或分析。在Kubernetes 1.8版本之前,通常使用Heapster作为度量数据的收集者,但自1.8版本起,Heapster被废弃,Metrics-Server成为了推荐的替代方案

(二)Metrics-Server的工作原理

Metrics-Server的工作原理相对简单,它定期从Kubernetes集群中的各个节点上收集度量数据,并将这些数据聚合后存储在内存中。然后,当外部用户或组件(如HPA)需要查询这些度量数据时,Metrics-Server会通过Kubernetes API Server提供相应的API接口进行响应。由于Metrics-Server只存储最近一段时间的度量数据(默认为1分钟),因此它不会成为集群的存储瓶颈

cAdvisor: 用于收集、聚合和公开 Kubelet 中包含的容器指标的守护程序。

kubelet: 用于管理容器资源的节点代理。 可以使用 /metrics/resource 和 /stats kubelet API 端点访问资源指标。

节点层面资源指标: kubelet 提供的 API,用于发现和检索可通过 /metrics/resource 端点获得的每个节点的汇总统计信息。

metrics-server: 集群插件组件,用于收集和聚合从每个 kubelet 中提取的资源指标。 API 服务器提供 Metrics API 以供 HPA、VPA 和 kubectl top 命令使用。Metrics Server 是 Metrics API 的参考实现。

(三)HPA与Metrics-Server的作用

Metrics-Server组件的作用:获取集群中的pod、节点等负载信息

HPA资源的作用:通过Metrics-Server获取的负载信息,自动伸缩的创建或者删除pod

(四)HPA与Metrics-Server的关系

HPA是Kubernetes的一个自动扩展控制器,它可以根据Pod的资源使用情况自动调整Pod的副本数量。而Metrics-Server为HPA提供了关键的度量数据支持。当HPA需要决定是否需要扩展或缩减Pod的副本数量时,它会通过Kubernetes API Server查询Metrics-Server收集的度量数据,然后根据这些数据进行决策。

例如,如果某个Deployment的Pod的CPU利用率超过了设定的阈值,HPA就会增加该Deployment的Pod副本数量;反之,如果CPU利用率过低,HPA就会减少Pod副本数量

(五)HPA与Metrics-Server的重要性

Metrics-Server和HPA在Kubernetes集群中扮演着至关重要的角色。Metrics-Server通过收集集群中各个资源的度量数据,为外部用户或组件提供了丰富的信息支持;而HPA则利用这些信息实现了Pod的自动扩展和缩减,从而确保了集群资源的有效利用和应用的高可用性。

在实际应用中,Metrics-Server和HPA可以帮助我们解决以下问题:

资源浪费:通过自动扩展和缩减Pod的副本数量,可以避免因资源分配不均或过度分配而导致的资源浪费。

应用性能:当应用面临高并发或高负载时,HPA可以迅速增加Pod副本数量以满足需求,从而确保应用的性能和稳定性。

运维效率:Metrics-Server和HPA的自动化特性可以大大减轻运维人员的工作压力,提高运维效率

更多详细信息访问:资源指标管道 | Kubernetes

二、部署metrics-server组件

(一)镜像获取

镜像获取的方式有多种

1.本地上传镜像包

使用docker load -i 镜像包名称 指令获取镜像

[root@node01 opt]#ls metrics-server.tar 
metrics-server.tar
[root@node01 opt]#docker load -i metrics-server.tar
0b97b1c81a32: Loading layer [==================================================>]  1.416MB/1.416MB
87ea89a1eabb: Loading layer [==================================================>]  39.61MB/39.61MB
Loaded image: k8s.gcr.io/metrics-server-amd64:v0.3.2

2.GitHub下载

https://github.com/kubernetes-sigs/metrics-server/releases/

3.国内云下载

docker pull registry.aliyuncs.com/google_containers/metrics-server:v0.6.3

在所有节点上部署镜像

[root@node01 opt]#docker images |grep metrics-server
registry.aliyuncs.com/google_containers/metrics-server           v0.6.3     817bbe3f2e51   14 months ago   68.9MB
k8s.gcr.io/metrics-server-amd64                                  v0.3.2     46aec181fcb3   5 years ago     40.8MB

(二)安装metrics-server组件

安装metrics-server组件,就是给k8s集群安装top指令。

1.获取yaml文件

[root@master01 metrics]#wget https://github.com/kubernetes-sigs/metrics-server/releases/download/v0.7.1/high-availability-1.21+.yaml
[root@master01 metrics]#ls
high-availability-1.21+.yaml

2.修改文件内容

[root@master01 metrics]#vim high-availability-1.21+.yaml
......
136           requiredDuringSchedulingIgnoredDuringExecution:
137           - labelSelector:
138               matchLabels:
139                 k8s: metrics-server   
#修改硬策略的标签,由于本机的coredns实例的标签键位k8s-app,需要修改为不一致的,或者注释pod反亲和
......
142             topologyKey: kubernetes.io/hostname
143       containers:
144       - args:
145         - --kubelet-insecure-tls   #启动允许使用不安全的TLS证书
146         - --cert-dir=/tmp
147         - --secure-port=10250
148         - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
149         - --kubelet-use-node-status-port
150         - --metric-resolution=15s
151         image: registry.aliyuncs.com/google_containers/metrics-server:v0.6.3
            #修改镜像为阿里云的镜像

......
197 ---
198 apiVersion: policy/v1beta1  #1.20版本以前的K8s集群修改PodDisruptionBudget资源的版本为v1beta
199 kind: PodDisruptionBudget
200 metadata:
201   labels:
202     k8s-app: metrics-server

3.创建资源

[root@master01 metrics]#kubectl apply -f high-availability-1.21+.yaml 
serviceaccount/metrics-server created
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created
clusterrole.rbac.authorization.k8s.io/system:metrics-server created
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created
service/metrics-server created
deployment.apps/metrics-server created
poddisruptionbudget.policy/metrics-server created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created

4.验证是否安装成功

//查看资源信息
[root@master01 metrics]#kubectl get pod -n kube-system |grep metrics-server
metrics-server-98c7c894d-skwjb     1/1     Running   0          3m55s
metrics-server-98c7c894d-xq8qr     1/1     Running   0          3m55s
[root@master01 metrics]#kubectl get deployment metrics-server -n kube-system 
NAME             READY   UP-TO-DATE   AVAILABLE   AGE
metrics-server   2/2     2            2           4m3s

//使用top命令查看node节点的top值
[root@master01 metrics]#kubectl top node
NAME       CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%   
master01   227m         5%     2078Mi          56%       
node01     100m         2%     965Mi           26%       
node02     114m         2%     580Mi           15% 

//查看pod资源的top值
[root@master01 metrics]#kubectl top pod -A
NAMESPACE      NAME                               CPU(cores)   MEMORY(bytes)   
helm-test      harbor-nginx-7db9b84fc4-p5tpl      1m           3Mi             
kube-flannel   kube-flannel-ds-8sgt8              10m          18Mi            
kube-flannel   kube-flannel-ds-nplmm              7m           21Mi            
kube-flannel   kube-flannel-ds-xwklx              7m           20Mi            
kube-system    coredns-74ff55c5b-dwzdp            4m           15Mi            
kube-system    coredns-74ff55c5b-ws8c8            3m           15Mi            
kube-system    etcd-master01                      22m          336Mi           
kube-system    kube-apiserver-master01            85m          398Mi           
kube-system    kube-controller-manager-master01   14m          51Mi            
kube-system    kube-proxy-psdnv                   4m           23Mi            
kube-system    kube-proxy-zmh82                   1m           15Mi            
kube-system    kube-proxy-zwnx2                   1m           22Mi            
kube-system    kube-scheduler-master01            4m           18Mi            
kube-system    metrics-server-98c7c894d-fsb4n     6m           20Mi            
kube-system    metrics-server-98c7c894d-nqph6     11m          14Mi            

三、部署HPA

(一)创建deployment

创建deployment控制器,用来生成pod,进行压测

[root@master01 metrics]#cat deployment.yaml 
apiVersion: apps/v1
kind: Deployment
metadata:
  name: dm-hpa
  labels:
    app: centos
spec:
  replicas: 1            #设置副本数量为1个
  selector:
    matchLabels:
      app: centos
  template:
    metadata:
      labels:
        app: centos
    spec:
      containers:
      - name: centos
        image: centos:7
        command: ["/bin/bash", "-c", "yum -y install epel-release;yum -y install stress;sleep 36000"]
#下载stress压测工具,并设置睡眠时间为36000s
        resources:
          requests:
            cpu: "50m"
          limits:
            cpu: "150m"
#设置现在CPU资源

创建资源

[root@master01 metrics]#kubectl apply -f deployment.yaml 
deployment.apps/dm-hpa created
[root@master01 metrics]#kubectl get pod
NAME                     READY   STATUS    RESTARTS   AGE
dm-hpa-556f64fc9-9fcff   1/1     Running   0          14s

(二)创建HPA资源

[root@master01 metrics]#cat hpa.yaml
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: hpa-tools
spec:
  maxReplicas: 10
  minReplicas: 2
  scaleTargetRef:
    apiVersion: apps/vl 
    kind: Deployment
    name: dm-hpa
  targetCPUUtilizationPercentage: 50

------------------------------------------------------------------------------

maxReplicas:10             #指定pod最大的数量是10(自动扩容的上限)
minReplicas:2              #指定pod最小的pod数量是2(自动缩容的下限)
scaleTargetRef             #指定弹性伸缩引用的目标  
apiVersion: apps/vl        #目标资源的api
kind: Deployment           #目标资源的类型是Deployment
name:dm-hpa                #目标资源的名称
targetCPUUtilizationPercentage: 50  #使用cpu阈值(使用到达多少,开始扩容、缩容)

创建HPA资源

[root@master01 metrics]#kubectl apply -f hpa.yaml 
horizontalpodautoscaler.autoscaling/hpa-tools created
[root@master01 metrics]#kubectl get hpa
NAME        REFERENCE           TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
hpa-tools   Deployment/dm-hpa   0%/50%    2         10        10         8s
[root@master01 metrics]#kubectl get pod
NAME                     READY   STATUS              RESTARTS   AGE
dm-hpa-556f64fc9-9fcff   1/1     Running             0          6m34s
dm-hpa-556f64fc9-vzs6p   0/1     ContainerCreating   0          1s
[root@master01 metrics]#kubectl get pod
NAME                     READY   STATUS    RESTARTS   AGE
dm-hpa-556f64fc9-9fcff   1/1     Running   0          6m38s
dm-hpa-556f64fc9-vzs6p   1/1     Running   0          5s
#由于设置的最小阈值为2所以它会自动创建pod,满足最小阈值的需求

(三)进行压测

进入pod使用stress压测工具进行压测

[root@master01 metrics]#kubectl exec -it dm-hpa-556f64fc9-9fcff sh
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl exec [POD] -- [COMMAND] instead.
sh-4.2# stress --cpu 4                      
stress: info: [97] dispatching hogs: 4 cpu, 0 io, 0 vm, 0 hdd

动态检测HPA   

[root@master01 pod]#kubectl get hpa -w
NAME        REFERENCE           TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
hpa-tools   Deployment/dm-hpa   1%/50%    2         10        2          14m
hpa-tools   Deployment/dm-hpa   0%/50%    2         10        2          15m
hpa-tools   Deployment/dm-hpa   1%/50%    2         10        2          16m
hpa-tools   Deployment/dm-hpa   130%/50%   2         10        2          17m

查看Pod资源

[root@master01 pod]#kubectl get pod
NAME                     READY   STATUS    RESTARTS   AGE
dm-hpa-556f64fc9-2zxgf   1/1     Running   0          39s
dm-hpa-556f64fc9-6jsz2   1/1     Running   0          9s
dm-hpa-556f64fc9-9fcff   1/1     Running   0          24m
dm-hpa-556f64fc9-9gt96   1/1     Running   0          39s
dm-hpa-556f64fc9-9jlm7   1/1     Running   0          9s
dm-hpa-556f64fc9-c6jgk   1/1     Running   0          24s
dm-hpa-556f64fc9-cd8xb   1/1     Running   0          9s
dm-hpa-556f64fc9-fzz5q   1/1     Running   0          9s
dm-hpa-556f64fc9-pc74k   1/1     Running   0          24s
dm-hpa-556f64fc9-vzs6p   1/1     Running   0          17m
#达到最大阈值10

pod生成后,CPU负载也会平摊随之下降

[root@master01 pod]#kubectl get hpa -w
NAME        REFERENCE           TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
hpa-tools   Deployment/dm-hpa   0%/50%    2         10        2          30m
hpa-tools   Deployment/dm-hpa   50%/50%   2         10        2          30m
hpa-tools   Deployment/dm-hpa   149%/50%   2         10        2          30m
hpa-tools   Deployment/dm-hpa   150%/50%   2         10        4          31m
hpa-tools   Deployment/dm-hpa   134%/50%   2         10        7          31m
hpa-tools   Deployment/dm-hpa   106%/50%   2         10        10         31m
hpa-tools   Deployment/dm-hpa   92%/50%    2         10        10         32m
hpa-tools   Deployment/dm-hpa   68%/50%    2         10        10         36m
hpa-tools   Deployment/dm-hpa   57%/50%    2         10        10         37m
hpa-tools   Deployment/dm-hpa   52%/50%    2         10        10         37m
hpa-tools   Deployment/dm-hpa   33%/50%    2         10        10         37m
hpa-tools   Deployment/dm-hpa   31%/50%    2         10        10         37m
......

当结束压测时,CPU资源会释放,同时Pod实例也会释放

[root@master01 pod]#kubectl get hpa 
NAME        REFERENCE           TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
hpa-tools   Deployment/dm-hpa   0%/50%    2         10        10         22m
----------------------------------------------------------------------------------------
[root@master01 pod]#kubectl get pod 
NAME                     READY   STATUS        RESTARTS   AGE
dm-hpa-556f64fc9-9fcff   1/1     Running       0          34m
dm-hpa-556f64fc9-vzs6p   1/1     Running       0          27m
-----------------------------------------------------------------------------------------
#Pod缩容的时间可能在5-6分钟左右,
#HPA 扩容的时候,负载节点数量上升速度会比较快;但回收的时候,负载节点数量下降速度会比较慢。
#原因是防止在业务高峰期时因为网络波动等原因的场景下
#果回收策略比较积极的话,K8S集群可能会认为访问流量变小而快速收缩负载节点数量
#而仅剩的负载节点又承受不了高负载的压力导致崩溃,从而影响业务

四、命名空间的资源限制

Kubernetes对资源的限制实际上是通过cgroup来控制的,cgroup是容器的一组用来控制内核如何运行进程的相关属性集合。针对内存、CPU 和各种设备都有对应的 cgroup。
默认情况下,Pod 运行没有 CPU 和内存的限额。这意味着系统中的任何 Pod 将能够像执行该 Pod 所在的节点一样, 消耗足够多的 CPU 和内存。一般会针对某些应用的 pod 资源进行资源限制,这个资源限制是通过 resources 的 requests 和 limits 来实现。requests 为创建 Pod 时初始要分配的资源,limits 为 Pod 最高请求的资源值。

(一)创建命名空间

[root@master01 metrics]#kubectl create ns test
namespace/test created
[root@master01 metrics]#kubectl get ns test
NAME   STATUS   AGE
test   Active   8s

(二)对资源数量的限制

创建deployment资源

[root@master01 metrics]#vim deployment.yaml 
[root@master01 metrics]#cat deployment.yaml 
apiVersion: apps/v1
kind: Deployment
metadata:
  name: centos-test
  namespace: test
  labels:
    app: centos1
spec:
  replicas: 6               #指定要运行的Pod副本数为6个
  selector:
    matchLabels:
      app: centos1
  template:
    metadata:
      labels:
        app: centos1
    spec:
      containers:
      - name: centos1
        image: centos:7
        command: ["/bin/bash", "-c", "yum -y install epel-release;yum -y install stress;sleep 36000"]
        resources:
          limits:
            cpu: "1000m"
            memory: "512Mi"
---
apiVersion: v1
kind: ResourceQuota             #资源配额的类型
metadata:
  name: ns-resource
  namespace: test               #资源配额适用的命名空间
spec:
  hard:                         #定义硬限制,即不能超过的资源配额
    pods: "5"                   #命名空间中可以存在的Pod的最大数量为5个
    services: "3"               #命名空间中可以存在的Service的最大数量为3个
    services.nodeports: "2"     #命名空间中可以存在的具有NodePort的Service的最大数量为2个

创建资源

[root@master01 metrics]#kubectl apply -f deployment.yaml 
deployment.apps/centos-test created
resourcequota/ns-resource created
[root@master01 metrics]#kubectl get all -n test
NAME                               READY   STATUS    RESTARTS   AGE
pod/centos-test-845c47f786-44bl8   1/1     Running   0          3s
pod/centos-test-845c47f786-55jhp   1/1     Running   0          3s
pod/centos-test-845c47f786-6lmvv   1/1     Running   0          3s
pod/centos-test-845c47f786-gckv2   1/1     Running   0          3s
pod/centos-test-845c47f786-kwbl7   1/1     Running   0          3s
pod/centos-test-845c47f786-r9jsk   1/1     Running   0          3s

NAME                          READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/centos-test   6/6     6            6           3s

NAME                                     DESIRED   CURRENT   READY   AGE
replicaset.apps/centos-test-845c47f786   6         6         6       3s
[root@master01 metrics]#kubectl run nginx --image=nginx:1.18.0 -n test
Error from server (Forbidden): pods "nginx" is forbidden: exceeded quota: ns-resource, requested: pods=1, used: pods=6, limited: pods=
------------------------------------------------------------------------------------------
#ResourceQuota 是用来限制命名空间内资源使用的配额,并且当超出限制时,
#它主要影响的是未来的资源请求,比如新的Pod的创建请求

#在指定的命名空间中的ResourceQuota已经被达到或超过时,Kubernetes API服务器会拒绝Pod的创建请求,并返回一个错误。
#但是,对于已经存在的Pod,ResourceQuota 并不会自动删除或终止它们

(三)对资源配额的限制

如果Pod没有设置requests和limits,则会使用当前命名空间的最大资源;如果命名空间也没设置,则会使用集群的最大资源。
K8S 会根据 limits 限制 Pod 使用资源,当内存超过 limits 时 cgruops 会触发 OOM。

这里就需要创建 LimitRange 资源来设置 Pod 或其中的 Container 能够使用资源的最大默认值

[root@master01 metrics]#vim limit.yaml
[root@master01 metrics]#cat limit.yaml
apiVersion: v1
kind: LimitRange                   #表示使用limitrange来进行资源控制
metadata:
  name: test2-limit
    namespace: test
    spec:
      limits:
        - default:                 #default: 即 limit 的值
              memory: 512Mi
              cpu: "1"
          defaultRequest:          #defaultRequest: 即 request 的值
            memory: 256Mi
            cpu: "0.5"
          type: Container          #类型支持 Container、Pod、PVC

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1843497.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

百万级 QPS 接入层网关架构方案演进

文章目录 前言1、单机架构2、DNS 轮询3、Nginx 单机4、Nginx 主备 Keepalived5、LVS 主备 Keepalived Nginx 集群6、LVS 主备 Keepalived Nginx 集群 DNS 轮询 前言 随着PC、移动互联网的快速发展,越来越多的人通过手机、电脑、平板等设备访问各种各样APP、网…

pdf只要前几页,pdf怎么只要前几页

在现代办公和学习环境中,PDF文件已成为我们日常处理信息的重要工具。然而,有时我们并不需要整个PDF文件的内容,而只是其中的几页。那么,如何高效地提取PDF文件中的特定页面呢?本文将为您介绍几种实用的方法。 打开 “ …

阿里CEO个人投资的智驾公司,走了不一样的路

佑驾创新在去年8月和11月完成两轮融资,在今年5月底递表港交所,目前拿到了29家车企88款车型的量产订单。自动驾驶赛道不缺明星,这些因素本不足以凸显它的差异化。但是在招股书中,一条特殊的发展路线,却让佑驾创新显得不…

搭建开发模式下的以太坊私有链【Geth:1.14.5】

一、为什么用到私有链? 在以太坊的公有链上部署智能合约、发起交易需要花费以太币。而通过修改配置,可以在本机搭建一套以太坊私有链,因为与公有链没关系,既不用同步公有链庞大的数据,也不用花钱购买以太币&#xff0…

2024GLEE生活暨教育(上海)博览会,8月20-22日,国家会展中心(上海)

2024GLEE生活暨教育(上海)博览会将于8月20-22日在中国国家会展中心(上海)举行,博览会总面积近万平方米,设有美好生活和教育产品两大主力展区,全面覆盖婴幼儿、学龄前、小学、初中、高中、大学、中年、老年各个年龄段的…

2024年了,上大学可以不需要用到电脑吗?

前言 在2024年的今天,电脑已经成为了人们工作生活的一大部分。Oh, no!好像手机才是。 好像每个人都是这样的:可以没有电脑,但不能没有手机…… 所以2024年的今天,上大学的小伙伴们可以不需要用到电脑吗?…

DDMA信号处理以及数据处理的流程---cfar检测

Hello,大家好,我是Xiaojie,好久不见,欢迎大家能够和Xiaojie一起学习毫米波雷达知识,Xiaojie准备连载一个系列的文章—DDMA信号处理以及数据处理的流程,本系列文章将从目标生成、信号仿真、测距、测速、cfar检测、测角、目标聚类、目标跟踪这几个模块逐步介绍,这个系列的…

SpringBoot 实现全局异常处理

为什么要使用全局异常处理? 减少冗余代码: 在不使用全局异常处理器的情况下,项目中各层可能会出现大量的try {…} catch {…} finally {…}代码块,这些代码块不仅冗余,还影响代码的可读性。全局异常处理器允许我们在一…

第二十五篇——信息加密:韦小宝说谎的秘诀

目录 一、背景介绍二、思路&方案三、过程1.思维导图2.文章中经典的句子理解3.学习之后对于投资市场的理解4.通过这篇文章结合我知道的东西我能想到什么? 四、总结五、升华 一、背景介绍 加密这件事,对于这个时代的我们来说非常重要,那么…

数据分析中的数学:从基础到应用20240617

数据分析中的数学:从基础到应用 数据分析离不开数学的支持,统计学和概率论是其重要组成部分。本文将通过几个具体的实例,详细讲解数据分析中常用的数学知识,并通过Python代码演示如何应用这些知识。 1. 描述性统计 基本概念和用…

java学习--集合(大写二.2)

看尚硅谷视频做的笔记 2.collection接口及方法 jdk8里有一些默认的方法,更多的是体现的是一种规范,规范更多关注的是一些抽象方法。 看接口里面的抽象方法,选一个具体的实现类。 测试collection的方法,存储一个一个数据都有哪些…

ENVI实战—一文搞定监督分类

实验1:利用ROI建立样本训练集和验证集 目的:学会利用ROI建立计算机分类时的样本集 过程: ①导入影像:打开ENVI,选择“打开→打开为→光学传感器→ESA→Sentinel-2”,将Sentinel-2影像导入到ENVI平台中。…

LabVIEW与3D相机开发高精度表面检测系统

使用LabVIEW与3D相机开发一个高精度表面检测系统。该系统能够实时获取三维图像,进行精细的表面分析,广泛应用于工业质量控制、自动化检测和科学研究等领域。通过真实案例,展示开发过程中的关键步骤、挑战及解决方案,确保系统的高性…

MySQL客户端与服务端建立连接抓包分析

文章目录 MySQL客户端与服务端建立连接流程抓包分析1.连接建立流程2.各类数据包介绍2.1挑战数据包2.2认证数据包2.3切换认证插件请求数据包2.4切换认证插件响应数据包2.5成功数据包2.6失败数据包3.注意点4.测试代码MySQL客户端与服务端建立连接流程抓包分析 抓包工具采用的是W…

大厂的 404 页面都长啥样?看到最后一个,我笑了~

每天浏览各大网站,难免会碰到404页面啊。你注意过404页面么?猿妹搜罗来了下面这些知名网站的404页面,以供大家欣赏,看看哪个网站更有创意: 腾讯 网易 淘宝 百度 新浪微博 新浪 京东 优酷 腾讯视频 搜狐 携程 去哪儿 今…

C#——装箱与拆箱详情

装箱与拆箱 装箱: 将值类型转换成引用类型的过程; 拆箱: 把引用类型转为值类型的过程,就是拆箱 装箱 拆箱

usb摄像头应用编程

作者简介: 一个平凡而乐于分享的小比特,中南民族大学通信工程专业研究生在读,研究方向无线联邦学习 擅长领域:驱动开发,嵌入式软件开发,BSP开发 作者主页:一个平凡而乐于分享的小比特的个人主页…

JUC并发编程-第二天:线程高级部分

线程高级部分 线程不安全原子性可见性有序性(指令重排)更多的解决线程安全 线程不安全 多线程下并发同时对共享数据进行读写,会造成数据混乱线程不安全 当多线程下并发访问临界资源时,如果破坏其原子性、可见性、有序性&#xff…

账号和权限的管理

文章目录 管理用户账号和组账号用户账号的分类超级用户普通用户程序用户 UID(用户id)和(组账号)GIDUID用户识别号GID组标识号 用户账号文件添加用户账号设置/更改用户口令 管理用户账号和组账号 用户账号的分类 超级用户 root 用户是 Linux 操作系统中默认的超级…

《米小圈动画汉字》汉字教育动画化:传统与创新的完美融合!

汉字,作为中华文化的瑰宝,承载着千百年来中华民族的智慧和思想。每一个汉字不仅仅是一个符号,更是一段历史的见证,一种文化的传承。在当今全球化的背景下,汉字教育面临着新的挑战与机遇。在这种背景下,如何…