海量数据处理利器 Roaring BitMap 原理介绍

news2024/10/6 4:07:41

作者:来自 vivo 互联网服务器团队- Zheng Rui

本文结合个人理解梳理了BitMap及Roaring BitMap的原理及使用,分别主要介绍了Roaring BitMap的存储方式及三种container类型及Java中Roaring BitMap相关API使用。

一、引言

在进行大数据开发时,我们可以使用布隆过滤器和Redis中的HyperLogLog来进行大数据的判重和数量统计,虽然这两种方法节省内存空间并且效率很高,但是也存在一些误差。如果需要100%准确的话,我们可以使用BitMap来存储数据。

BitMap 位图索引数据结构被广泛地应用于数据存储和数据搜索中,但是对于存储较为分散的数据时,BitMap会占用比较大的内存空间,因此我们更偏向于使用 Roaring BitMap稀疏位图索引进行存储。同时,Roaring BitMap广泛应用于数据库存储和大数据引擎中,例如Hive,Spark,Doris,Kylin等。

下文将分别介绍 BitMap 和 Roaring BitMap 的原理及其相关应用。

二、BitMap原理

BitMap的基本思想就是用bit位来标记某个元素对应的value,而key就是这个元素。

例如,在下图中,是一个字节代表的8位,下标为1,2,4,6的bit位的值为1,则该字节表示{1,2,4,6}这几个数。

图片

在Java中,1个int占用4个字节,如果用int来存储这四个数字的话,那么将需要4 * 4 = 16字节。

BitMap可以用于快速排序,查找,及去重等操作。优点是占用内存少(相较于数组)和运算效率高,但是缺点也非常明显,无法存储重复的数据,并且在存储较为稀疏的数据时,浪费存储空间较多。

三、Roaring BitMap 原理

3.1 存储方式

为了解决BitMap存储较为稀疏数据时,浪费存储空间较多的问题,我们引入了稀疏位图索引Roaring BitMap。Roaring BitMap 有较高的计算性能及压缩效率。下面简单介绍一下Roaring BitMap的基本原理。

Roaring BitMap处理int型整数,将32位的int型整数分为高16位和低16位分别进行处理,高16位作为索引分片,而低16位用于存储实际数据。其中每个索引对应一个数据桶(bucket),那么一共可以包含2^16 = 65536个数据块。每个数据桶使用container容器来存储低16位的部分,每个数据桶最多存储2^16 = 65536个数据。

图片

如上图所示,高16位作为索引查找具体的数据块,当前索引值为0,低16位作为value进行存储。

Roaring BitMap在进行数据存储时,会先根据高16位找到对应的索引key(二分查找),低16位作为key对应的value,先通过key检查对应的container容器,如果发现container不存在的话,就先创建一个key和对应的container,否则直接将低16位存储到对应的container中。

Roaring BitMap的精妙之处在于使用不同类型的container,接下来将对其进行介绍。

3.2 container类型

1.ArrayContainer

顾名思义,ArrayContainer直接采用数组来存储低16位数据,没有采用任何数据压缩算法,适合存储比较稀疏的数据,在Java中,使用short数组来存储,并且占用的内存空间大小和数据量成线性关系。由于short为2字节,因此n个数据为2n字节。ArrayContainer采用二分查找定位有序数组中的元素,因此时间复杂度为O(logN)。ArrayContainer的最大数据量为4096, 4096 * 2b = 8kb。

2.BitMapContainer

BitMapContainer采用BitMap的原理,就是一个没有经过压缩处理的普通BitMap,适合存储比较稠密的数据,在Java中使用Long数组存储低16位数据,每一个bit位表示一个数字。由于每个container需要存储2^16 = 65536个数据,如果通过BitMap进行存储的话,需要使用2^16个bit进行存储,即8kb的数据空间。

可以从下图中看出ArrayContainer和BitMapContainer的内存空间使用关系,当数据量小于4096时,使用ArrayContainer比较合适,当数据量大于等于4096时,使用BitMapContainer更佳。

图片

因为BitMap直接使用位运算,所以BitMapContainer的时间复杂度为O(1)。

3.RunContainer

RunContainer采用Run-Length Encoding 行程长度编码进行压缩,适合存储大量连续数据。Java中使用short数组进行存储。连续bit位程度越高的话越节省存储空间,最佳场景下(65536个数据全为1)只需要存储4字节。最差场景为所有数据都不连续,所有存储数据位置为奇数或者偶数,这种场景需要存储128kb。由于采用二分查找算法定位元素,因此时间复杂度为O(logN)。

行程长度编码即的原理是对连续出现的数字进行压缩,只记录初始数字和后续连续数量。

例如:[1,2,3,4,5,8,9,10]使用编码后的数据为[1,4,8,2]。

Java 里可以使用runOptinize()方法来对比RunContainer和其他两个Container存储空间大小,如果使用RunContainer存储空间更佳则会进行转化。

根据上面三个Container类型我们可以得知如何进行选择:

  1. Container默认使用ArrayContainer,当元素数量超过4096时,会由ArrayContainer转换BitMapContainer。

  2. 当元素数量小于等于4096时,BitMapContainer会逆向转换回ArrayContainer。

  3.  正常增删元素不会使Container直接变成RunContainer,而需要用户进行优化方法调用才会转换为最节省空间的Container。

3.3 Roaring BitMap 相关源码

介绍完Roaring BitMap的三种container类型以后,让我们了解一下,Roaring BitMap的相关源码。这里介绍一下Java中增加元素的源码实现。

public void add(final int x) {
    final short hb = Util.highbits(x);
    final int i = highLowContainer.getIndex(hb);
    if (i >= 0) {
      highLowContainer.setContainerAtIndex(i,
          highLowContainer.getContainerAtIndex(i).add(Util.lowbits(x)));
    } else {
      final ArrayContainer newac = new ArrayContainer();
      highLowContainer.insertNewKeyValueAt(-i - 1, hb, newac.add(Util.lowbits(x)));
    }
  }

Roaring BitMap首先获取添加元素的高16位,然后再调用getIndex获取高16位对应的索引,如果索引大于0,表示已经创建该索引对应的container,故直接添加相应的元素低16位即可;否则的话,说明该索引对应的container还没有被创建,先创建对应的ArrayContainer,再进行元素添加。值得一提的是,在getIndex方法中,使用了二分查找来获取索引值,所以时间复杂度为O(logn)。

// 包含一个二分查找
protected int getIndex(short x) {
  // 在二分查找之前,我们先对常见情况优化。
  if ((size == 0) || (keys[size - 1] == x)) {
    return size - 1;
  }
  // 没有碰到常见情况,我们只能遍历这个列表。
  return this.binarySearch(0, size, x);
}

对于元素添加,三种Container提供了不同的实现方式,下面将分别介绍。

1. ArrayContainer

if (cardinality == 0 || (cardinality > 0
          && toIntUnsigned(x) > toIntUnsigned(content[cardinality - 1]))) {
    if (cardinality >= DEFAULT_MAX_SIZE) {
      return toBitMapContainer().add(x);
    }
    if (cardinality >= this.content.length) {
      increaseCapacity();
    }
    content[cardinality++] = x;
  } else {
    int loc = Util.unsignedBinarySearch(content, 0, cardinality, x);
    if (loc < 0) {
      // 当标签中元素数量等于默认最大值时,把ArrayContainer转换为BitMapContainer
      if (cardinality >= DEFAULT_MAX_SIZE) {
        return toBitMapContainer().add(x);
      }
      if (cardinality >= this.content.length) {
        increaseCapacity();
      }
      System.arraycopy(content, -loc - 1, content, -loc, cardinality + loc + 1);
      content[-loc - 1] = x;
      ++cardinality;
    }
  }
  return this;
}

ArrayContainer把添加元素分成两种场景,一种走二分查找,另外一种不走二分查找。

第一种场景:不走二分查找。

当基数为0或者值大于container中的最大值,可以直接添加,因为content数组是有序的,最后一个是最大值。

当基数大于等于默认最大值4096时,ArrayContainer将转换为BitMapContainer。如果基数大于content的数组长度的话,需要将content进行扩容。最后进行赋值即可。

第二种场景:走二分查找。

先通过二分查找找到对应的插入位置,如果返回loc大于等于0,说明存在,直接返回即可,如果小于0才进行后续插入。后续操作同上,当基数大于等于默认最大值4096时,ArrayContainer将转换为BitMapContainer。如果基数大于content的数组长度的话,需要将content进行扩容。最后通过拷贝数组将元素插入到content数组中。

2. BitMapContainer

public Container add(final short i) {
  final int x = Util.toIntUnsigned(i);
  final long previous = BitMap[x / 64];
  long newval = previous | (1L << x);   BitMap[x / 64] = newval;
  if (USE_BRANCHLESS) {
    cardinality += (previous ^ newval) >>> x;
  } else if (previous != newval) {
    ++cardinality;
  }
  return this;
}

BitMap数组为BitMapContainer的存储容器存放数据的内容,数据类型为long,在这里我们只需要找到x在BitMap中的位置,并且把相应的bit位置1即可。x/64就是找到对应long的旧值,1L<<x 就是把对应的bit位置为1,再跟旧值进行或操作,就可以得到新值,再将这个新值存回到bitmap数组即可。<="" span="">

3. RunContainer

public Container add(short k) {
   
  int index = unsignedInterleavedBinarySearch(valueslength, 0, nbrruns, k);
  if (index >= 0) {
    return this;// already there
  }
  index = -index - 2;
  if (index >= 0) {
    int offset = toIntUnsigned(k) - toIntUnsigned(getValue(index));
    int le = toIntUnsigned(getLength(index));
    if (offset <= le) {
      return this;
    }
    if (offset == le + 1) {
      // we may need to fuse
      if (index + 1 < nbrruns) {
        if (toIntUnsigned(getValue(index + 1)) == toIntUnsigned(k) + 1) {
          // indeed fusion is needed
          setLength(index,
              (short) (getValue(index + 1) + getLength(index + 1) - getValue(index)));
          recoverRoomAtIndex(index + 1);
          return this;
        }
      }
      incrementLength(index);
      return this;
    }
    if (index + 1 < nbrruns) {
      // we may need to fuse
      if (toIntUnsigned(getValue(index + 1)) == toIntUnsigned(k) + 1) {
        // indeed fusion is needed
        setValue(index + 1, k);
        setLength(index + 1, (short) (getLength(index + 1) + 1));
        return this;
      }
    }
  }
  if (index == -1) {
    // we may need to extend the first run
    if (0 < nbrruns) {
      if (getValue(0) == k + 1) {
        incrementLength(0);
        decrementValue(0);
        return this;
      }
    }
  }
  makeRoomAtIndex(index + 1);
  setValue(index + 1, k);
  setLength(index + 1, (short) 0);
  return this;
}

RunContainer中的两个数据结构,nbrruns表示有多少段行程,数据类型为int,valueslength数组表示所有的行程,数据类型为short。

  1. 首先,使用二分查找+顺序查找在valueslength数组中查找元素k的插入位置index。如果查找到的index结果大于等于0那就说明k是某个行程起始值,已经存在,直接返回。

  2. -index-2是为了指向前一个行程起始值的索引。

  3. 接下来是一些偏移量和索引值的判断,主要是为了确认k是否落在上一个行程里,或者外面,如果落在上一个行程里,则直接返回,否则需要新建一个行程或者就近与一个行程混合并且将行程长度加1。

3.4 BitMap 和 Roaring BitMap 存储情况对比

public static void count(Integer inputSize) {         RoaringBitMap BitMap = new RoaringBitMap();         BitMap.add(0L, inputSize);
 
        //获取BitMap个数
        int cardinality = BitMap.getCardinality();
 
        //获取BitMap压缩大小
        int compressSizeIntBytes = BitMap.getSizeInBytes();
 
        //删除压缩(移除行程编码,将container退化为BitMapContainer 或 ArrayContainer)         BitMap.removeRunCompression();
 
        //获取BitMap不压缩大小
        int uncompressSizeIntBytes = BitMap.getSizeInBytes();
 
        System.out.println("Roaring BitMap个数:" + cardinality);
        System.out.println("最好情况,BitMap压缩大小:" + compressSizeIntBytes / 1024 + "KB");
        System.out.println("最坏情况,BitMap不压缩大小:" + uncompressSizeIntBytes / 1024 / 1024 + "MB");
 
        BitSet bitSet = new BitSet();
        for (int i = 0; i < inputSize; i++) {
            bitSet.set(i);
        }
        //获取BitMap大小
        int size = bitSet.size();
 
        System.out.println("BitMap个数:" + bitSet.length());
        System.out.println("BitMap大小:" + size / 8 / 1024 / 1024 + "MB");
    }

上述代码使用了Java内置的BitMap(BitSet) 和 Roaring BitMap进行存储大小对比,输出结果如下所示。

  • Roaring BitMap个数:1000000000

  • 最好情况,BitMap压缩大小:149KB

  • 最坏情况,BitMap不压缩大小:119MB

  • Roaring BitMap个数:1000000000

  • BitMap大小:128MB

可以发现,Roaring BitMap的压缩性能效果非常好,同等情况下,是BitMap占用内存的近一千分之一。在退化成BitMapContainer/arrayContainer之后也仍然比使用基本的BitMap存储效果好一些。

四、Roaring BitMap 使用

4.1 Java 中相关 API 使用

在Java中,Roaring BitMap提供了交并补差集等操作,如下代码所示,列举了Java中roaing BitMap的相关API使用方式。

//添加单个数字
public void add(final int x)

//添加范围数字
public void add(final long rangeStart, final long rangeEnd)

//移除数字
public void remove(final int x)

//遍历RBM
public void forEach(IntConsumer ic)

//检测是否包含
public boolean contains(final int x)

//获取基数
public int getCardinality()

//位与,取两个RBM的交集,当前RBM会被修改
public void and(final RoaringBitMap x2)

//同上,但是会返回一个新的RBM,不会修改原始的RBM,线程安全
public static RoaringBitMap and(final RoaringBitMap x1, final RoaringBitMap x2)

//位或,取两个RBM的并集,当前RBM会被修改
public void or(final RoaringBitMap x2)

//同上,但是会返回一个新的RBM,不会修改原始的RBM,线程安全
public static RoaringBitMap or(final RoaringBitMap x1, final RoaringBitMap x2)

//异或,取两个RBM的对称差,当前RBM会被修改
public void xor(final RoaringBitMap x2)

//同上,但是会返回一个新的RBM,不会修改原始的RBM,线程安全
public static RoaringBitMap xor(final RoaringBitMap x1, final RoaringBitMap x2)

//取原始值和x2的差集,当前RBM会被修改
public void andNot(final RoaringBitMap x2)

//同上,但是会返回一个新的RBM,不会修改原始的RBM,线程安全
public static RoaringBitMap andNot(final RoaringBitMap x1, final RoaringBitMap x2)

//序列化
public void serialize(DataOutput out) throws IOException
public void serialize(ByteBuffer buffer)

//反序列化
public void deserialize(DataInput in) throws IOException
public void deserialize(ByteBuffer bbf) throws IOException

对于序列化来说,Roaring BitMap官方定义了一套序列化规则,用来保证不同语言实现的兼容性。

图片

Java中可以使用serialize方法进行序列化,deserialize方法进行反序列化。

4.2 业务实际场景应用

Roaring BitMap可以用来构建大数据标签,针对类型特征来创建对应的标签。

在我们的业务场景中,有很多需要基于人群标签进行交并补集运算的场景,下面以一个场景为例,我们需要计算每天某个设备接口 在设备标签A上的查询成功率,因为设备标签A中的设备不是所有都活跃在网的,所以我们需要将设备标签A与每日日活人群标签取交集,得到的交集大小才能用作成功率计算的分母,另外拿查询成功的标签人群做分子来进行计算即可,查询时长耗时为1s。

假如没有使用标签保存集合之前,我们需要在hive表中查询出同时满足当天在网的活跃用户和设备A的用户数量,查询时长耗时在几分钟以上。两种方式相比之下,使用Roaring BitMap查询的效率更高。

图片

五、总结

本文结合个人理解梳理了BitMap及Roaring BitMap的原理及使用,分别主要介绍了Roaring BitMap的存储方式及三种container类型及Java中Roaring BitMap相关API使用,如有不足和优化建议,也欢迎大家批评指正。

参考资料:

  • Chambi S , Lemire D , Kaser O , et al.

    Better BitMap performance with Roaring 

    BitMaps[J]. Software—practice & Experience, 2016, 46(5):709-719.

  • https://RoaringBitMap.org/

  • GitHub - RoaringBitmap/RoaringFormatSpec: Specification of the compressed-bitmap Roaring format

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1842222.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数据结构】【版本1.3】【线性时代】——栈

快乐的流畅&#xff1a;个人主页 个人专栏&#xff1a;《算法神殿》《数据结构世界》《进击的C》 远方有一堆篝火&#xff0c;在为久候之人燃烧&#xff01; 文章目录 引言一、栈的概念二、栈的模拟实现2.1 定义2.2 初始化2.3 销毁2.4 压栈2.5 判空2.6 出栈2.7 获取栈顶元素2.8…

一分钟生成论文全文,这款AI论文神器你不会还不知道吧?

毕业季写论文就选范文喵AI论文助手。范文喵V2.0主要包括了论文范文、选题分析、开题报告、任务书的写作、以及论文答辩PPT、论文解读等功能。此外&#xff0c;我们也会在近期进一步优化范文喵论文助手&#xff0c;写作效果更好的V3.0版本预计将于今年7月份和大家见面&#xff0…

Ps:动作面板

Ps菜单&#xff1a;窗口/动作 Window/Action 快捷键&#xff1a;Alt F9 动作面板 Action Panel提供了一种自动化的方法&#xff0c;可以记录、播放、编辑和管理一系列的 Photoshop 操作。使用动作可以大大提高工作效率&#xff0c;特别是在处理重复性任务时。 ◆ ◆ ◆ 常用…

WPF 深入理解二、布局

布局与控件 常用得布局属性 HorizontalAlignment:用于设置元素的水平位置VerticalAlignment: 用于设置元素的垂直位置Margin: 指定元素与容器的边距Height: 指定元素的高度Width: 指定元素的宽度WinHeight/winWidth:指定元素的最小高度和宽度MaxHeight/MaxWidth: 指定元素的最…

AD域离线破解新思路:Trustroasting和TimeRoasting

简介 近期Tom Tervoort发表了白皮书《TIMEROASTING, TRUSTROASTING AND COMPUTER SPRAYING》并在Github发布了名为Timeroast的工具包&#xff0c;其中介绍了几种新的攻击思路TimeRoasting、Trustroasting和计算机账户密码喷洒&#xff0c;本篇文章主要对TimeRoasting和Trustro…

主流电商平台API接口【京东商品详情按关键字搜索商品按图搜索京东商品(拍立淘)获得店铺的所有商品】

主流电商平台商品接口在电商企业中的应用可以帮助企业实现信息同步、库存管理、订单处理、数据分析和营销推广等多重功能&#xff0c;提升运营效率、优化用户体验&#xff0c;进而推动业务增长。 jd API 接入说明 API地址:申请调用KEY地址 调用示例&#xff1a; 参数说明 通用…

『大模型笔记』斯坦福大学教授李飞飞在2024年数据与人工智能峰会上的人工智能历史与未来

MAC 文章目录 一. 斯坦福大学教授李飞飞在2024年数据与人工智能峰会上的人工智能历史与未来引言过去与现在现代 AI 的进步未来的发展空间智能近期进展与未来展望文字输入制作视频机器人学习AI 与人类互动医疗健康应用结语二. 参考文献一. 斯坦福大学教授李飞飞在2024年数据与人…

保姆级网络信任证书配置教程

前言 TitanIDE在第一次安装完成以后&#xff0c;会显示的网络协议是https不安全的&#xff0c;我们需要在本地配置信任证书&#xff0c;有信任证书才能正常使用所有的功能&#xff0c;以下操作均以服务器名称ide&#xff0c;ip为192.168.101.144的服务器为例&#xff0c;在实际…

若依 Excel导入 字段值转换 字典自动匹配转换等

Excel表格数据截图&#xff1a; 数据库结构&#xff1a;需要将数据转换为数值或char类型存储 转换结果&#xff1a; 未使用Excel注解参数的效果&#xff1a; 断点数据 使用Excel注解参数的效果&#xff1a; 断点数据 最终入库&#xff1a; 参考&#xff1a; http://doc.ru…

一种改进最大相关峭度解卷积的滚动轴承故障诊断方法(MATLAB)

近年来&#xff0c;最大相关峭度解卷积受到了研究人员越来越多的关注&#xff0c;陆续有多篇研究论文将该方法应用于滚动轴轴承故障诊断。MCKD是由McDonald提出的一种解卷积方法&#xff0c;其算法中设计了一个新的目标函数——相关峭度&#xff0c;并以此为优化目标设计一系列…

软件测试——稳定性测试:adb Monkey

Monkey 1. Monkey1.1 Monkey 是什么1.2 Monkey 测试场景1.3 Monkey 特点1.4 Monkey 在哪里1.5 测试准备事项1.6 Monkey 参数列表 2. 基本命令3. 常用参数4. 事件类型5. 调试参数6. 日志管理7. 日志错误定位8. Monkey测试可以发现的问题 1. Monkey 1.1 Monkey 是什么 Monkey是一…

测量8个回路的三相多功能电表

随着工业的发展,在生产过程中,往往需要同时间测量多台设备的电流、电压和电量数据的采集&#xff0c;但是很多情况下&#xff0c;安装独立电表或者多用户计量箱&#xff0c;受限于安装空间大小无法实现。 下面我们举例说明&#xff0c;如图所示需要计量八个塑壳开关回路下设备的…

vue的安装配置并创建项目

npm 工具的安装 安装node.js之后&#xff0c;npm工具会自动安装到系统环境中 网址:https://nodejs.org/en vue的安装 安装vue并创建项目 npm create vuelatest 进入项目之后&#xff0c;然后启动npm run dev 解决方法&#xff1a; npm install -g create-vite 再次启动 通…

怎么为自己的VPS选择合适的CPU和RAM?

为网站选择VPS&#xff08;虚拟专用服务器&#xff09;与为家庭或办公室选择台式机或笔记本电脑没有什么不同。基本上&#xff0c;您要做的就是查看硬件配置并比较功能和价格。 然而&#xff0c;虽然您可能对个人计算机所需的资源类型有一个粗略的估计&#xff0c;但为服务器获…

企业PC端官网在线客服源码系统 完全开源可二开 附带源代码包+搭建部署教程

系统概述 企业 PC 端官网在线客服源码系统是一款专为企业打造的先进客服解决方案。它基于先进的技术架构&#xff0c;旨在为企业提供稳定、高效、功能丰富的在线客服服务。 该系统采用了模块化设计理念&#xff0c;将各个功能模块有机地整合在一起&#xff0c;形成了一个完整…

【Mybatis-plus】查询及更新为null或空字符串

前言 查询为 null 或者 空字符串时&#xff0c;可以使用 or() 关键字。 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 查询 使用 LambdaQueryWrapper 查询 parentCode 为 null 或者 空字符串 的数据。 LambdaQueryWrapper<CompanyEntity> qu…

redhat-devtoolset备忘

参考&#xff1a; User Guide Red Hat Developer Toolset 12 | Red Hat Customer Portal https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/12/html-single/user_guide/index Red Hat Devtoolset 是 Red Hat 提供的一组开发工具集合&#xff0c;主要用…

MySQL服务无法启动,服务没有报告任何错误(cmd里面)

安装压缩包版MySQL时&#xff0c;有时会此问题 解决方法 方法一、MySQL默认3306端口被占用&#xff0c;此时结束占用该端口的任务进程即可&#xff1b; 1.进入cmd,查找占用的端口 netstat -aon|findstr 3306 发现进程编号&#xff08;也就是PID)为2084的进程占用了此端口&am…

面试专区|【62道Redis高频题整理(附答案背诵版)】

什么是Redis? Redis是一个高性能的开源内存数据库系统&#xff0c;它使用键值对存储数据&#xff0c;并支持多种数据结构&#xff0c;如字符串、哈希、列表、集合和有序集合。与传统关系型数据库不同&#xff0c;Redis将数据存储在内存中&#xff0c;以实现快速读写操作。同时…

Chromium 开发指南2024 Mac篇-Chromium项目编译小技巧(六)

1. 前言 在编译大型项目如 Chromium 时&#xff0c;优化编译速度是非常重要的。本文将介绍一些编译优化的小技巧&#xff0c;尤其是如何使用 ccache 来加速 C/C 代码的重新编译。ccache 是一个编译器缓存&#xff0c;通过缓存之前的编译并检测何时再次进行相同的编译&#xff…