异构集成封装类型2D、2.1D、2.3D、2.5D和3D封装技术

news2024/10/5 12:58:21

 

 7b74571804c4ca09373334e9ac30be67.jpeg

异构集成封装类型:2D、2.1D、2.3D、2.5D和3D封装详解

   


简介随着摩尔定律的放缓,半导体行业越来越多地采用芯片设计和异构集成封装来继续推动性能的提高。这种方法是将大型硅芯片分割成多个较小的芯片,分别进行设计、制造和优化,然后再集成到单个封装中。
本文将介绍芯片设计的基本原理、异构集成封装、优势和挑战,以及在大批量制造 (HVM) 中使用这些方法的产品示例。
片上系统(SoC)传统的片上系统 (SoC) 将 CPU、GPU、内存和其他专用处理器等组件集成到一个单片芯片中,如图 1 所示,苹果公司 A 系列应用处理器 (AP) 的晶体管数量不断增加。然而,单片 SoC 的扩展成本越来越高,效率也越来越低,令人望而却步。 2890f1d2569c4e68680662bcfff46e3a.jpeg图 1 苹果的 AP:晶体管与 A10-A17 处理技术和年份的对比Chiplet设计Chiplet设计不是单片 SoC,而是将各种计算芯片(如 CPU、GPU、AI 加速器)和内存分解到独立的硅芯片上。这些芯片可以利用优化的制造工艺,并采用先进的封装技术组装成单一封装。主要优势包括:

  • 通过隔离故障提高制造良率
  • 能够混合不同的半导体工艺节点
  • 扩展现有工艺节点的价值
  • 独立扩展计算和内存
  • 改进上市时间和产品生命周期管理


不过,Chiplet设计也面临着一些挑战,如芯片间通信开销、组装复杂性和潜在的热机械问题。
异构集成封装为了将独立的芯片组装成一个内聚封装,采用了异构集成封装技术,如 2D、2.1D、2.3D、2.5D 和 3D 集成,这些技术是根据其互连密度能力分类的(图 2)。我们将举例说明: 8a077101e4c75ef967484cd469abe792.jpeg图 2 根据密度和性能划分的先进封装等级二维集成如图 3 和 4 所示,在二维集成中,芯片通过倒装芯片、线键或扇出式封装并排组装在同一封装基板上。这种方法广泛用于智能手机等消费类产品。 b6c1cb9a5fac33eec79c50a1b8b8ff29.jpeg图 3 二维集成电路集成实例 a 一个封装基板上有两个倒装芯片。b 封装基板上的一个倒装芯片和一个带有线键的 MEMS6d5f0ddf3fb86c54b452f3b7394011ba.jpeg图 4 扇出 RDL 基底面上四个芯片的异构集成2.1D 集成2.1D 集成可直接在封装基板上制造细间距金属互连层,从而实现比 2D 更高的互连密度。图 5 显示了 Shinko 的集成薄膜高密度有机封装 (i-THOP),其线路/空间互连层为 2μm。JCET 的 uFOS(图 6)以及日立、日月光和 SPIL 的方法也采用了 2.1D 集成。 

图5展示Shinko的2.1D集成电路:采用革新性的i-THOP技术,实现薄膜高密度有机封装,提升集成效率。

b6b9cdac392e42c3f282cf6a5eeb3fa3.jpeg图 6 JCET 的 2.1.D 集成电路集成:uFOS(超格式有机基板)另一种 2.1D 方法是在封装中嵌入具有细间距 RDL 的硅桥,以实现芯片到芯片的通信,如英特尔的 EMIB(图 7)、IBM 的 DBHi(图 8),以及应用材料公司、台积电、硅品、Amkor、日月光和其他公司的嵌入式桥变体(图 9 和 10)。 6d8e29c54a8fb49f48e52609a6f9e5c6.jpeg图 7 a 英特尔嵌入在有机封装基板和 Agilex FPGA 模块中的 EMIB(嵌入式多层互连桥接器)9dc9cf9164f7e7bb0d91921e6437f154.jpeg图 8 IBM 的 DBHi(直接粘合异质集成)e546af16ccbe5866ff2b15b6bccd2079.jpeg图 9 a Applied Materials 通过扇出芯片(桥接器)首模朝上工艺嵌入 EMC 的桥接器。b 欣兴电子公司通过扇出芯片(桥接器)首模朝下工艺在 EMC 中嵌入桥接器。2022 年,美国专利号:11,410,933。0858f9b98fb2be7912217cc04bba3bb1.jpeg图 10 a 嵌入 EMC 的电桥示例:台积电的 LSI(本地硅互连)。b SPIL 的 FO-EB(扇出嵌入式电桥)。c Amkor 的 S-Connect。d ASE 的 sFOCoS(堆叠硅桥扇出基底芯片)。

2.3D 集成2.3D 集成制造了一个与封装基板集成的独立细间距 RDL 基板(或有机interposer),实现了比 2.1D 更高的互连密度,思科的大型 12 层有机interposer就是一例(图 11)。 66873a50c2d56c2068e49b1dbc689ee2.jpeg图 11 思科公司采用 SAP/PCB 方法将 2.3D 集成电路与积层有机interposer集成在一起制造 RDL 基底面的方法包括半加成 PCB 工艺、扇出芯片先导法(如图 12 中的日月光 FOCoS)和扇出芯片后/RDL 先导法(如图 13 中的三星、图 14 中的日月光、图 15-17 中的欣兴)。 284e65c0e5af6c291f8ba92fab1336f9.jpeg图 12 日月光采用扇出(芯片先导)RDL 基底面(中间膜)的 2.3D 集成电路集成电路6954d7a27d1fcac7d61dfd00d242f3ab.jpeg图 13 三星的 2.3D 集成电路与扇出式(芯片后置)RDL interposer的集成5a4dc88474bfcca3ff716a15cdabb199.jpeg图 14 日月光的 2.3D 集成电路与在临时晶圆上制造的扇出型(芯片后置)RDL interposer的集成449d81729a1fd32da58e01bc72f58233.jpeg图 15 利用 PID(光成像电介质)制造的带有扇出(芯片末端)RDL interposer的欣兴电子 2.3D 集成电路集成电路f210a050f2f28940dc28bff9f9f9cbc9.jpeg图 16 使用 ABF制造的 2.3D 集成电路扇出(芯片末端)RDL interposer16d931e61f0172a2bbdc8a2cd8a1ec9a.jpeg图 17 欣兴电子公司带有互连层的 2.3D 集成电路集成电路2.5D 集成在 2.5D 集成中,芯片组装在带有硅通孔(TSV)的硅中间膜上,然后安装在封装基板上,从而实现极高的互连密度(图 18)。这方面的例子包括 AMD/UMC 在 2.5D 夹层上采用 HBM 内存立方体的 GPU(图 19),以及 Nvidia 在台积电 CoWoS-2 夹层上采用 HBM2 的 GPU(图 20)。 5b23b1ec0c9c0560af5d0315eee50b86.jpeg图 18 a 2.1D、b 2.3D 和 c 2.5D/3D 集成电路集成示意图2f56f988a0b7d60418c16570ec680300.jpeg图 19 AMD/UMC 的 2.5D 集成电路集成图820493be6e36348986f0e7fff8b35fae.jpeg图 20 NVidia/TSMC 的 2.5D 集成电路集成图台积电已在集成电路中开发出深沟槽电容器(图 21),而弗劳恩霍夫则展示了集成光学和电子器件的三维光子集成电路(图 22)。图 23 和图 24 展示了使用 2.5D interposer的光电共封装器件。 4e2bf32b64e780c1f0513570df3e736e.jpeg图 21 台积电的 2.5D 集成电路与 ODC(片上电容)和 DTC(深沟电容)的集成。b 电容密度。2001c89fbce6f82a8acf44667e75f8d1.jpeg图 22 用于 Tb/s 光互连的 Fraunhofer 3D 硅基光电子集成电路0682f80e8e9fd670cf02ac9d0bd049d8.jpeg图 23 高速 PIC(光子集成电路)和 EIC(电子集成电路)器件的封装de1dc34102923ba87720ea7636f0bee5.jpeg图 24 用于 HPC 的 2.5D 集成电路集成。无源 TSV 夹层支持 SoC 和 HBM三维集成 三维集成利用硅通孔(TSV)垂直堆叠芯片,无硅通孔(三维封装,图 25)或有硅通孔(三维集成,图 26)。高带宽内存(HBM)是高性能计算的关键三维集成内存技术,可垂直堆叠多个 DRAM 芯片(图 27)。 059b575fc3a0e915e4809f399413ef41.jpeg图 25 3D 集成电路封装(无 TSV)的几个示例。a 用接线键合堆叠的存储芯片。b 两个芯片面对面焊接凸点倒装芯片,然后用焊线键合到下一级互连。c 两个芯片背靠背粘接;底部芯片通过焊接凸块倒装芯片粘接到基板,顶部芯片通过焊线粘接到基板。d 两个芯片面对面焊接凸块粘接,顶部芯片通过焊球粘接到基板。e 应用处理器芯片组的倒装芯片 PoP。f 应用处理器芯片组的扇出 PoP。13177dd79e82d95ab056c2219a02f5a3.jpeg图 26 三维集成电路集成实例:a 带有微凸块和 TSV 的 HBM;b 带有 TSV 和微凸块的 CoC;c 带有 TSV 和无凸块的 CoC。cc25792f3e008650299f0c5bba8f5956.jpeg图 27 HBM、HBM2、HBM2E 和 HBM3例如,IME 使用 TSV 和微凸块的逻辑内存(图 28),以及英特尔使用 FOVEROS 技术和微凸块将计算芯片集成在有源插层上的 Lakefield 处理器(图 29)。台积电也展示了用于三维集成的无凸块混合键合技术(图 30、31)。 9c98e57073e76e5814557b5921ce78fd.jpeg图 28 3D 集成电路集成:存储器芯片通过 TSV 微凸块集成在 ASIC 芯片上af22afe528034efffd08360d0067ab46.jpeg图 29 3D 集成电路集成: 英特尔芯片面对面微凸块在有源 TSV 互连器上82f432e5452f01e48f6b315c1bb28dbe.jpeg图 30 a 台积电通过混合接合实现的 SoIC。b 电气性能:SoIC 混合键合与传统倒装芯片键合的比较。c 凸点密度性能:SoIC 混合键合与传统倒装芯片键合e3c0293fe08fecb57faaa59d6139b33b.jpeg图 31 台积电用于 AMD 3D V-cache 的 SoIC 铜-铜混合键合技术HVM 中的芯片产品一些高性能计算产品已经开始采用芯片设计和异构集成封装制造:

  • 台积电CoWoS 2.5D封装技术赋能Xilinx/TSMC Virtex FPGA,2013年即实现出货,卓越性能引领行业潮流。
  • AMD Radeon GPU搭载创新2.5D interposer技术的HBM,如2015年旗舰R9 Fury X所示,引领图形处理新纪元,强劲性能不容小觑。
  • Nvidia Pascal与Volta GPU在2.5D插槽上搭载高效HBM2显存,如2016年推出的Pascal 100,引领行业革新,释放卓越性能。
  • AMD EPYC 服务器 CPU,采用大型有机基板上的芯片(2019 年)
  • 英特尔Lakefield移动处理器,采用创新的FOVEROS 3D封装技术,高效集成芯片,是2020年科技新品中的佼佼者(见图34)。
  • 苹果A12/A16应用处理器,采用台积电InFO扇出封装PoP技术(自2016年起,图35),展现先进封装工艺。
  • 使用扇出面板级封装集成的三星智能手表 SoC 和存储器(2018 年,图 36)

 8c837d8e817402eb2fd1c342562e69bf.jpeg图 32 AMD/UMC 的 2.5D 集成电路集成3acb503ad3c34fce5891596912647b6a.jpeg图 33 NVidia/TSMC 的 2.5D 集成电路集成a88cf48f9d830592b20f1c0c2721b503.jpeg图 34 3D集成: 英特尔的芯片在有源 TSV interposer上,面对面的微凸块集成f9cd52c2100ba60fcb7bbb61bbd9b152.jpeg图 35 苹果/台积电为 iPhone 的 AP 芯片组采用 InFO 的 PoP91ce28d8e3abe50b8a888402c4d367d4.jpeg图 36 三星为其智能手表采用 FOPLP 的 PoP

结论Chiplet设计和异质集成封装是半导体持续扩大规模和提高性能的关键因素。通过将大型单片 SoC 分解成使用 2D、2.1D、2.3D、2.5D 或 3D 封装技术组装的优化芯片,我们可以缓解制造问题,扩大工艺节点规模,集成异构技术,并推动新的系统架构。在计算、移动、人工智能、网络和其他领域,许多大批量产品已经在利用这些方法。
随着业界不断突破摩尔定律的极限,Chiplet设计和异构集成的重要性将与日俱增,并将推动半导体制造、封装和系统设计领域的创新。


-对此,您有什么看法见解?-

-欢迎在评论区留言探讨和分享。-

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1840745.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法金 | 再见!!!梯度下降(多图)

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 接前天 李沐:用随机梯度下降来优化人生! 今天把达叔 6 脉神剑给佩奇了,上 吴恩达:机器…

Python接口测试实战之搭建自动化测试框架

🍅 视频学习:文末有免费的配套视频可观看 🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 一.数据分离:从Excel中读取数据 之前的用例中,数据直接写在代码文件里,不…

OpenAI新模型发布,免费开放GPT-4o!但只开放一点点...

GPT-4o 中的“o”代表“omni”——指的是 GPT-4o 的多模态。 该模型将向免费客户开放,这意味着任何人都可以通过 ChatGPT 访问 OpenAI 最先进的技术。 GPT-4o 是 OpenAI 昨天晚上发布的新旗舰模型,可以实时推理音频、视觉和文本。 据官方介绍&#xff0…

椭圆的标准方程与协方差矩阵的特征值和特征向量的关系

椭圆的标准方程与协方差矩阵的特征值和特征向量的关系 flyfish 单位圆 :单位圆表示在标准正交基下的分布。 椭圆 :通过协方差矩阵的特征向量和特征值变换得到的椭圆,表示数据在新的坐标系下的分布。 特征向量 :红色箭头表示特征…

【C语言】一维数组(详解)

目录 1. 数组的概念 2. 一维数组的创建和初始化 3. 一维数组的使用 4. 一维数组在内存中的存储 5. sizeof 计算数组元素个数 正文开始—— 1. 数组的概念 数组是一组相同类型元素的集合。 数组中存放的是1个或者多个数据,但是数组元素个数不能为0。…

运算放大器(运放)同相放大器电路

设计目标 输入电压ViMin输入电压ViMax输出VoMin输出VoMax电源Vcc电源Vee-1V1V-10V10V15V–15V 设计说明 这种设计将输入信号 Vi 放大,信号增益为 10V/V。输入信号可能来自高阻抗源(例如 MΩ),因为该电路的输入阻抗由运算放大器…

vue3delete请求报403forbidden,前后端解决方式,cookie无效问题

在做开发时,前期已经在Controller类加上CrossOrigin(origins "*"),发送get和post请求都没问题,但遇到delete请求时,又报出跨域问题 一.前端添加proxy代理服务器(未能解决) 在vue.config.js中使…

PHP转Go系列 | 字符串的使用姿势

大家好&#xff0c;我是码农先森。 输出 在 PHP 语言中的输出比较简单&#xff0c;直接使用 echo 就可以。此外&#xff0c;在 PHP 中还有一个格式化输出函数 sprintf 可以用占位符替换字符串。 <?phpecho 码农先森; echo sprintf(码农:%s, 先森);在 Go 语言中调用它的输…

pikachu靶场之XSS漏洞测试

一、环境配置 1.pikachu官网下载 下载地址&#xff1a;https://github.com/zhuifengshaonianhanlu/pikachu 2.百度网盘&#xff08;里面含有pikachu跟phpstudy&#xff09; 链接&#xff1a;pikachu下载 密码&#xff1a;abcd 配置&#xff1a;pikachu下载及安装-图文详解…

14K屏FPGA通过MIPI接口点亮

一、屏参数 屏分辨率为13320*5120&#xff0c;MIPI接口8 LANE。 二、驱动接口电路 屏偏置电压5.5V&#xff0c;逻辑供电1.8V。8 LANE MIPI&#xff0c;2 PORT。 三、MIPI DSI规范 DCS (Display Command Set)&#xff1a;DCS是一个标准化的命令集&#xff0c;用于命令模式的显…

基于单片机的智能窗户控制系统的设计

摘 要&#xff1a; 根据单片机技术和现代传感器技术 &#xff0c; 本文主要针对基于单片机的智能窗户控制系统的设计进行探讨 &#xff0c; 仅供参考 。 关键词&#xff1a; 单片机 &#xff1b; 智能窗户 &#xff1b; 控制系统 &#xff1b; 设计 在现代科学技术持续发展的带…

融资融券两融利率最低多少?两融利率最低账户怎么申请?

融资融券账户余额理财技巧 融资融券账户不支持货币基金申赎、逆回购等业务&#xff0c;投资者可以将资金大于维保比例300%的部分通过银证转账转出再转入到普通账户&#xff0c;参与证券公司现金理财或逆回购等业务。 融券卖出和还券技巧 融券卖出所得的资金仅能用于买券还券&…

Linux操作系统学习:day05

内容来自&#xff1a;Linux介绍 视频推荐&#xff1a;[Linux基础入门教程-linux命令-vim-gcc/g -动态库/静态库 -makefile-gdb调试]( 目录 day0530、删除用户31、添加和删除用户组创建用户组删除用户组 32、修改密码33、使用tar工具进行压缩和解压缩压缩解压缩 34、使用zip u…

▶《强化学习的数学原理》(2024春)_西湖大学赵世钰 Ch4 值迭代 与 策略迭代 【动态规划 算法】

PPT 截取必要信息。 课程网站做习题。总体 MOOC 过一遍 1、视频 学堂在线 习题 2、过 电子书 补充 【下载&#xff1a; 本章 PDF 电子书 GitHub】 [又看了一遍视频。原来第一次跳过了好多内容。。。] 3、总体 MOOC 过一遍 习题 学堂在线 课程页面链接 中国大学MOOC 课程页面链…

【宠粉赠书】科技图表绘制:R语言数据可视化

为了回馈粉丝们的厚爱&#xff0c;今天小智给大家送上一套科研绘图的必备书籍——《R语言数据可视化&#xff1a;科技图表绘制》。下面我会详细给大家介绍这套图书&#xff0c;文末留有领取方式。 图书介绍 《R语言数据可视化&#xff1a;科技图表绘制》结合编者多年的数据分析…

jenkins安装和使用 (二)

参考视频资料 https://www.bilibili.com/video/BV1bS4y1471A?p10&vd_sourcee0dcd147bd5d730317de804d788cd6f9 安装maven插件 新建item 配置构建信息 项目地址替换为自己的实际地址 其余保持先保持默认 先然后在主页就看到了这个项目 查看控制台输出 稍等一…

Java 17的新特性

Java 17引入了多项新特性&#xff0c;以下是一些重要的更新&#xff1a; 增强的伪随机数生成器&#xff08;JEP 356&#xff09; Java 17为伪随机数生成器&#xff08;PRNG&#xff09;提供了新的接口类型和实现&#xff0c;包括可跳转的PRNG和另一类可拆分的PRNG算法&#xf…

聊聊 Mybatis 动态 SQL

这篇文章&#xff0c;我们聊聊 Mybatis 动态 SQL &#xff0c;以及我对于编程技巧的几点思考 &#xff0c;希望对大家有所启发。 1 什么是 Mybatis 动态SQL 如果你使用过 JDBC 或其它类似的框架&#xff0c;你应该能理解根据不同条件拼接 SQL 语句有多痛苦&#xff0c;例如拼…

得物面试:什么是零复制?说说 零复制 底层原理?(吊打面试官)

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中&#xff0c;最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格&#xff0c;遇到很多很重要的零复制的问题&#xff1a; 说一说Rocketmq、是如何实现每秒上百万数据的超…

ACIS采用自底向上的方式创建box

在学习任何CAD几何内核的时候&#xff0c;首先需要学习的是这个几何内核的几何拓扑数据结构&#xff0c;学习完毕后&#xff0c;一个很好的练习是自己采用底层的几何、拓扑构建API&#xff0c;创建一个box。通过这个练习&#xff0c;可以加深初学者对所学几何内核数据结构的理解…