算法金 | 再见!!!梯度下降(多图)

news2024/12/23 10:43:58

大侠幸会,在下全网同名「算法金」

0 基础转 AI 上岸,多个算法赛 Top

「日更万日,让更多人享受智能乐趣」

接前天 李沐:用随机梯度下降来优化人生!

今天把达叔 6 脉神剑给佩奇了,上 吴恩达:机器学习的六个核心算法! ——梯度下降

1、 目标

  • 梯度下降优化算法的概述,目的在于帮助读者理解不同算法的优缺点。

2、 开整

  • 梯度下降法在优化神经网络中的应用和普遍性。

3、 梯度下降法的变形形式

  • 批梯度下降法:使用整个数据集计算梯度。
  • 随机梯度下降法(SGD):使用单个样本计算梯度。
  • 小批量梯度下降法:使用小批量样本计算梯度。

4、 挑战

  • 学习率的选择、学习率调整、不同参数的学习率需求、高度非凸误差函数的优化问题。

5、 梯度下降优化算法

  • 动量法:加速SGD并减少摇摆。
  • Nesterov加速梯度下降法(NAG):提供预知能力以调整步长。
  • Adagrad:自适应学习率,适应稀疏数据。
  • Adadelta:解决Adagrad学习率递减问题。
  • RMSprop:处理Adagrad学习率问题,使用指数衰减平均。
  • Adam:结合动量和自适应学习率。

6、 并行和分布式SGD

  • Hogwild!:无锁并行SGD。
  • Downpour SGD:异步SGD,使用参数服务器。
  • 延迟容忍SGD:适应更新延迟的并行SGD。
  • TensorFlow:支持大规模分布式计算的框架。
  • 弹性平均SGD(EASGD):增强探索能力的SGD。

7、 优化SGD的其他策略

  • 数据集的洗牌和课程学习:避免模型偏差,提高收敛性。
  • 批量归一化:提高学习率,减少对初始化的依赖。
  • Early stopping:提前结束训练以防止过拟合。
  • 梯度噪音:提高模型对初始化的鲁棒性。

8、 总结

  • 对梯度下降及其优化算法的总结,以及不同场景下算法的选择建议。

走你~

1. 摘要

  • 梯度下降优化算法的概述,目的在于帮助读者理解不同算法的优缺点

梯度下降优化算法的概述

梯度下降优化算法是机器学习和深度学习中最常用的优化算法之一。它通过不断调整模型参数,使得损失函数的值逐渐减小,从而使模型逐步逼近最优解

梯度下降优化算法的优点

  1. 简单易实现:梯度下降算法的基本原理简单,容易理解和实现
  2. 广泛应用:无论是线性回归、逻辑回归,还是复杂的神经网络,梯度下降算法都可以应用

梯度下降优化算法的缺点

  1. 依赖初始值:梯度下降算法的收敛速度和最终结果可能会受到初始值的影响
  2. 容易陷入局部最优:在复杂的非凸损失函数中,梯度下降算法可能会陷入局部最优解,而无法找到全局最优解

梯度下降算法的改进

为了克服上述缺点,研究人员提出了多种改进算法,如动量法、Adagrad、Adam等。这些改进算法在加速收敛、避免局部最优等方面有显著效果。我们将在后续内容中详细介绍这些改进算法

2. 应用和普遍性

  • 梯度下降法在优化神经网络中的应用和普遍性

梯度下降法在机器学习和深度学习中的重要性不可忽视。作为一种经典的优化算法,梯度下降法被广泛应用于各种模型的训练过程中,尤其是在神经网络的优化中。

梯度下降法的基本原理

梯度下降法的核心思想是通过不断调整模型参数,使得损失函数的值逐渐减小,从而使模型逐步逼近最优解。具体来说,梯度下降法通过计算损失函数相对于模型参数的梯度,然后沿着梯度的反方向更新参数,以达到最小化损失函数的目的。

(梯度下降 by Divakar Kapil)

神经网络中的应用

在神经网络的训练过程中,梯度下降法起到了至关重要的作用。神经网络的训练过程本质上就是一个通过梯度下降法优化损失函数的过程。具体步骤如下:

  1. 前向传播:计算当前参数下的模型输出和损失函数值
  2. 反向传播:计算损失函数相对于模型参数的梯度
  3. 参数更新:使用梯度下降法更新模型参数

这个过程会反复进行,直到损失函数的值收敛到某个最小值。

普遍性

梯度下降法不仅在神经网络中广泛应用,还被应用于其他很多机器学习模型中,比如线性回归、逻辑回归、支持向量机等。它的普遍性和适用性使得它成为机器学习领域的一个重要工具。

在实际应用中,梯度下降法的具体形式有很多,比如批梯度下降法、随机梯度下降法和小批量梯度下降法。不同形式的梯度下降法在计算效率、收敛速度和收敛稳定性上各有优劣,我们将在下一部分详细介绍这些变形形式。

3. 梯度下降法的变形形式

  • 批梯度下降法:使用整个数据集计算梯度
  • 随机梯度下降法(SGD):使用单个样本计算梯度
  • 小批量梯度下降法:使用小批量样本计算梯度

批梯度下降法

批梯度下降法,也称为标准梯度下降法,是最基本的梯度下降变形形式。它使用整个数据集来计算损失函数的梯度,然后一次性更新模型参数。

优点

  • 稳定性高:每次更新都是基于整个数据集,因此梯度估计非常准确
  • 容易实现:算法实现简单,便于理解和应用

缺点

  • 计算量大:每次更新都需要遍历整个数据集,对于大型数据集计算开销巨大
  • 内存需求高:需要将整个数据集加载到内存中,可能导致内存不足

公式

批梯度下降法的更新公式如下:

(梯度下降 by Saugat Bhattarai)

随机梯度下降法(SGD)

随机梯度下降法是一种通过每次仅使用一个样本来计算梯度的变形形式。它每次随机选择一个样本进行参数更新,这使得算法在处理大型数据集时更加高效。

优点

  • 计算效率高:每次更新只需要计算一个样本的梯度,大大减少了计算开销
  • 内存需求低:每次只需加载一个样本,节省内存

缺点

  • 收敛不稳定:由于每次更新基于单个样本,梯度估计有较大噪声,可能导致收敛过程不稳定
  • 可能震荡:在非凸损失函数中,更新方向可能来回震荡,难以到达全局最优解

公式

随机梯度下降法的更新公式如下:

(SGD by bogotobogo com)

小批量梯度下降法

小批量梯度下降法是一种折中方案,它每次使用一个小批量(mini-batch)样本来计算梯度并更新参数。小批量的大小通常在 32 到 512 之间。

优点

  • 计算效率与稳定性平衡:结合了批梯度下降和随机梯度下降的优点,计算效率和稳定性较好
  • 硬件友好:小批量的计算可以充分利用现代硬件的并行计算能力

缺点

  • 参数调整复杂:需要选择合适的小批量大小,以平衡计算效率和稳定性

公式

小批量梯度下降法的更新公式如下:

(Mini-batch gradient descent by Ayush Pradhan)

三种方式对比下,感受下这性感的曲线

4. 挑战

  • 学习率的选择
  • 学习率调整
  • 不同参数的学习率需求
  • 高度非凸误差函数的优化问题

学习率的选择

学习率是梯度下降算法中的一个关键参数,它决定了每次更新参数的步长。选择合适的学习率非常重要,学习率过大或过小都会影响模型的收敛效果。

学习率过大

当学习率过大时,参数更新的步长过大,可能会导致模型在损失函数表面跳跃,从而错过最优解。这种情况会导致损失函数震荡或发散,无法收敛。

学习率过小

当学习率过小时,参数更新的步长过小,模型收敛速度会变得非常慢,甚至可能陷入局部最优。这种情况会导致训练时间过长,难以获得满意的结果。

学习率调整

为了应对学习率选择的问题,研究人员提出了多种学习率调整策略,以动态调整学习率,使得模型能够更快、更稳定地收敛。

学习率衰减

学习率衰减是一种常用的策略,它会随着训练的进行逐渐减小学习率。这样可以在训练初期使用较大的学习率加速收敛,在训练后期使用较小的学习率稳定收敛。

学习率调度器

学习率调度器是一种更灵活的调整策略,可以根据预设的规则动态调整学习率。例如,在每经过一定次数的迭代后,将学习率减半。

自适应学习率

一些优化算法如 Adagrad、RMSprop 和 Adam,通过引入自适应学习率机制,使得每个参数都有不同的学习率,能够根据参数的历史梯度信息自动调整学习率。

不同参数的学习率需求

在实际应用中,不同的模型参数可能需要不同的学习率。例如,在深度神经网络中,靠近输入层的参数可能需要较小的学习率,而靠近输出层的参数可能需要较大的学习率。为了解决这个问题,可以使用分层学习率策略,针对不同层设置不同的学习率。

高度非凸误差函数的优化问题

在深度学习中,模型的损失函数通常是高度非凸的,包含多个局部最优解。传统的梯度下降算法在这种情况下容易陷入局部最优解,从而影响模型性能。

动量法

动量法通过在更新参数时加入动量项,能够在一定程度上克服局部最优问题。它会在每次更新时,保留一部分之前的更新方向,从而加速收敛。

5. 梯度下降优化算法

  • 动量法:加速SGD并减少摇摆
  • Nesterov加速梯度下降法(NAG):提供预知能力以调整步长
  • Adagrad:自适应学习率,适应稀疏数据
  • Adadelta:解决Adagrad学习率递减问题
  • RMSprop:处理Adagrad学习率问题,使用指数衰减平均
  • Adam:结合动量和自适应学习率

动量法

动量法是一种在梯度下降法基础上改进的优化算法。它通过在参数更新时加入一个动量项,可以加速收敛并减少参数更新过程中的摇摆现象。

原理

动量法会在每次更新参数时,保留一部分之前的更新方向,并在此基础上进行新的更新。这种方法使得更新方向更加平滑,从而加快收敛速度。

优点

  • 加速收敛:尤其在鞍点附近,动量法可以显著加速收敛速度
  • 减少振荡:在陡峭的损失函数区域,可以减少参数更新过程中的振荡

缺点

  • 参数选择:需要选择合适的动量系数和学习率

Nesterov加速梯度下降法(NAG)

NAG是在动量法的基础上进一步改进的算法。它在计算梯度时,考虑了当前动量的方向,从而提供了预知能力,可以更准确地调整步长。

原理

NAG会先根据当前动量方向预估一下参数的位置,然后在这个预估位置计算梯度,从而更新参数。

优点

  • 更准确的更新方向:由于考虑了动量方向,更新方向更加准确
  • 更快的收敛速度:在一些情况下,比动量法收敛速度更快

缺点

  • 实现复杂:相对于动量法,NAG的实现更复杂

(MGD vs NAG by Akshay L Chandra)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(仔细看,NAG(蓝色)与动量(红色)相比-摇摆幅度较小 by Akshay L Chandra)

Adagrad

Adagrad是一种自适应学习率的优化算法,特别适用于处理稀疏数据。它通过调整每个参数的学习率,使得在训练过程中自动适应不同参数的更新需求。

原理

Adagrad会根据历史梯度累积平方和来调整每个参数的学习率。对于更新较频繁的参数,学习率会逐渐减小;对于更新较少的参数,学习率则相对较大。

优点

  • 无需手动调整学习率:自动适应不同参数的学习率
  • 适合稀疏数据:在处理稀疏数据时表现良好

缺点

  • 学习率递减:随着时间推移,学习率会不断减小,导致收敛速度减慢

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(AdaGrad(白色)与梯度下降(青色)在具有鞍点的地形上。AdaGrad 的学习率被设置为高于梯度下降的学习率,但无论学习率如何,AdaGrad 的路径更直的观点在很大程度上都是正确的 by Lili Jiang)

Adadelta

Adadelta是对Adagrad的改进算法,主要解决Adagrad学习率递减的问题。它通过限制累积梯度的窗口大小,避免学习率无限减小。

原理

Adadelta会使用滑动平均的方法来限制累积梯度的影响,从而使得学习率在训练过程中保持相对稳定。

优点

  • 稳定的学习率:避免了Adagrad中学习率无限减小的问题
  • 无需手动调整学习率:与Adagrad一样,自动适应不同参数的学习率

缺点

  • 复杂性增加:相对于Adagrad,Adadelta的实现更加复杂

RMSprop

RMSprop也是一种自适应学习率的优化算法,主要解决了Adagrad学习率递减的问题。它通过引入指数衰减平均,使得学习率在训练过程中保持相对稳定。

原理

RMSprop会使用指数衰减平均的方法来计算累积梯度的平方,从而调整每个参数的学习率。

优点

  • 稳定的学习率:避免了Adagrad中学习率无限减小的问题
  • 适用于深度神经网络:在深度神经网络中表现良好

缺点

  • 参数选择复杂:需要选择合适的衰减率和学习率

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(RMSProp (绿色) vs AdaGrad (白色).第一轮只是显示球;第二次运行还显示了由平方表示的梯度平方和 by Lili Jiang)

Adam

Adam是一种结合动量和自适应学习率的优化算法,综合了动量法和RMSprop的优点,在深度学习中广泛应用。

原理

Adam算法会同时计算梯度的一阶动量和二阶动量,并使用这两个动量来调整每个参数的学习率。

优点

  • 快速收敛:结合动量和自适应学习率,收敛速度快
  • 稳定性高:在深度神经网络中表现出色,稳定性高

缺点

  • 参数选择复杂:需要选择合适的动量系数和学习率

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

再次,感受下这德芙般丝滑的曲线

6. 并行和分布式SGD

  • Hogwild!:无锁并行SGD
  • Downpour SGD:异步SGD,使用参数服务器
  • 延迟容忍SGD:适应更新延迟的并行SGD
  • TensorFlow:支持大规模分布式计算的框架
  • 弹性平均SGD(EASGD):增强探索能力的SGD

Hogwild!:无锁并行SGD

Hogwild! 是一种无锁并行SGD算法,旨在提高梯度下降的并行计算效率。在这种算法中,每个计算节点可以独立地更新参数,而无需等待其他节点完成更新,从而大大提高了计算速度。

原理

Hogwild! 算法通过允许多个计算节点同时更新共享参数,而不使用锁机制,从而减少了同步开销。虽然这样可能会引入一些更新冲突,但实际应用中这种影响通常较小。

优点

  • 高效并行:大大减少了同步开销,提高了计算效率
  • 简单实现:实现相对简单,不需要复杂的锁机制

缺点

  • 可能引入冲突:由于无锁更新,可能会引入一些更新冲突,影响最终结果

Downpour SGD:异步SGD,使用参数服务器

Downpour SGD 是一种异步SGD算法,它使用参数服务器来协调多个计算节点的参数更新。每个计算节点独立计算梯度并异步发送给参数服务器,参数服务器负责更新全局参数。

原理

Downpour SGD 算法通过使用参数服务器来管理全局参数,各个计算节点可以独立地进行计算并异步更新参数。这样可以提高并行计算的效率,同时保持参数的一致性。

优点

  • 高效并行:异步更新减少了同步开销,提高了计算效率
  • 适应大规模数据:适合处理大规模数据和模型

缺点

  • 实现复杂:需要参数服务器和多个计算节点的协调,增加了实现复杂度
  • 延迟问题:由于异步更新,可能会引入更新延迟,影响收敛速度

延迟容忍SGD:适应更新延迟的并行SGD

延迟容忍SGD是一种能够适应更新延迟的并行SGD算法。它通过在更新过程中容忍一定的延迟,来提高并行计算的效率。

原理

延迟容忍SGD 通过允许一定的延迟来进行参数更新,从而提高计算效率。即使在更新过程中有一些节点的更新延迟,算法仍然能够有效地进行参数更新。

优点

  • 适应延迟:能够容忍一定的更新延迟,提高并行计算的效率
  • 稳定性高:在有延迟的环境中,算法仍能稳定收敛

缺点

  • 参数选择复杂:需要选择合适的延迟容忍参数,增加了实现复杂度

TensorFlow:支持大规模分布式计算的框架

TensorFlow 是一个支持大规模分布式计算的开源框架,它提供了多种并行和分布式计算的工具,能够方便地实现并行和分布式SGD。

原理

TensorFlow 通过数据并行和模型并行的方式,实现了大规模分布式计算。数据并行是将数据分成多个小批量,分发到不同的计算节点进行并行计算;模型并行是将模型分成多个部分,分发到不同的计算节点进行并行计算。

优点

  • 强大功能:支持多种并行和分布式计算方式,功能强大
  • 社区支持:有广泛的社区支持和丰富的文档

缺点

  • 学习曲线陡峭:相对于其他框架,TensorFlow 的学习曲线较陡峭,初学者需要一定的时间来掌握

弹性平均SGD(EASGD):增强探索能力的SGD

弹性平均SGD(EASGD)是一种增强探索能力的并行SGD算法。它通过在参数更新时加入弹性平均项,增强了参数的探索能力,避免陷入局部最优。

原理

EASGD 通过在参数更新时,将参数向全局平均值靠拢,从而增强参数的探索能力。具体来说,在每次更新时,不仅根据梯度更新参数,还会根据全局平均值调整参数。

优点

  • 增强探索能力:通过加入弹性平均项,增强了参数的探索能力
  • 避免局部最优:有效避免陷入局部最优

缺点

  • 实现复杂:需要计算全局参数的平均值,增加了实现复杂度

7. 优化SGD的其他策略

  • 数据集的洗牌和课程学习:避免模型偏差,提高收敛性
  • 批量归一化:提高学习率,减少对初始化的依赖
  • Early stopping:提前结束训练以防止过拟合
  • 梯度噪音:提高模型对初始化的鲁棒性

数据集的洗牌和课程学习

在使用随机梯度下降(SGD)时,数据集的洗牌和课程学习策略可以显著提高模型的收敛性和稳定性。

数据集的洗牌

在每个训练周期开始前,将数据集进行随机打乱(洗牌),可以防止模型对数据顺序的依赖,从而减少过拟合的风险。

课程学习

课程学习是一种逐步增加训练难度的策略,先用简单的样本进行训练,再逐步引入更复杂的样本。这种方法可以帮助模型更快地收敛,并提高最终的模型性能。

批量归一化

批量归一化是一种加速深度神经网络训练的技术。通过对每一层的激活值进行归一化,批量归一化可以使得每层输入的分布更加稳定,从而允许使用更高的学习率,并减少对参数初始化的依赖。

原理

批量归一化在每一层的输入上,先计算均值和方差,然后对输入进行归一化处理,再通过可训练的尺度和平移参数进行线性变换。

优点

  • 加速训练:允许使用更高的学习率,加速训练过程
  • 稳定性:减少对参数初始化的依赖,提高训练稳定性

缺点

  • 计算开销:在每层增加了额外的计算开销

Early stopping

Early stopping 是一种防止过拟合的策略。当验证集的损失函数在训练过程中不再下降时,提前停止训练,从而防止模型在训练集上过拟合。

原理

在每个训练周期结束时,计算验证集的损失函数值。如果损失函数在连续若干周期内不再下降或开始上升,则提前停止训练。

优点

  • 防止过拟合:通过提前停止训练,防止模型在训练集上过拟合
  • 节省计算资源:避免了不必要的训练周期,节省计算资源

缺点

  • 需要验证集:需要一个独立的验证集来监控模型性能

梯度噪音

在梯度下降过程中加入噪音,可以帮助模型跳出局部最优解,提高模型对参数初始化的鲁棒性。

原理

在每次更新参数时,向梯度中加入一个随机噪音项,使得参数更新过程更加随机,从而增加探索全局最优解的可能性。

优点

  • 增强探索能力:帮助模型跳出局部最优解
  • 提高鲁棒性:提高模型对参数初始化的鲁棒性

缺点

  • 可能增加训练时间:随机噪音的引入可能会增加训练时间

[ 抱个拳,总个结 ]

  • 对梯度下降及其优化算法的总结,以及不同场景下算法的选择建议

梯度下降及其优化算法总结

梯度下降法是机器学习和深度学习中最基础和常用的优化算法之一。通过不断调整模型参数,使得损失函数的值逐渐减小,梯度下降法能够帮助模型逐步逼近最优解。根据数据集和具体应用场景的不同,可以选择不同形式的梯度下降法,如批梯度下降法、随机梯度下降法和小批量梯度下降法。

1. 批梯度下降法

  • 使用整个数据集计算梯度
  • 适用于较小的数据集,计算稳定但速度慢

2. 随机梯度下降法(SGD)

  • 使用单个样本计算梯度
  • 计算速度快,但梯度估计噪声大,适用于大规模数据集

3. 小批量梯度下降法

  • 使用小批量样本计算梯度
  • 结合了批梯度下降法和随机梯度下降法的优点,计算效率和稳定性较好

梯度下降优化算法

为了提高梯度下降法的收敛速度和稳定性,研究人员提出了多种优化算法,这些优化算法在不同的应用场景下有各自的优劣。

1. 动量法

  • 加速SGD并减少摇摆,适用于有鞍点的损失函数

2. Nesterov加速梯度下降法(NAG)

  • 提供预知能力以调整步长,比动量法收敛更快

3. Adagrad

  • 自适应学习率,适应稀疏数据,但学习率递减

4. Adadelta

  • 解决Adagrad学习率递减问题,保持稳定学习率

5. RMSprop

  • 使用指数衰减平均处理Adagrad学习率问题,适用于深度神经网络

6. Adam

  • 结合动量和自适应学习率,综合了动量法和RMSprop的优点,适用于各种应用场景

并行和分布式SGD

在处理大规模数据和模型时,并行和分布式SGD是提高计算效率的重要手段。以下是一些常用的并行和分布式SGD算法:

1. Hogwild!

  • 无锁并行SGD,提高计算效率,但可能引入冲突

2. Downpour SGD

  • 异步SGD,使用参数服务器,适用于大规模分布式计算

3. 延迟容忍SGD

  • 适应更新延迟,提高并行计算效率

4. TensorFlow

  • 支持大规模分布式计算的框架,功能强大

5. 弹性平均SGD(EASGD)

  • 增强探索能力,避免局部最优

优化SGD的其他策略

除了上述优化算法,还有一些策略可以进一步优化SGD的效果:

1. 数据集的洗牌和课程学习

  • 避免模型偏差,提高收敛性

2. 批量归一化

  • 提高学习率,减少对初始化的依赖

3. Early stopping

  • 提前结束训练以防止过拟合

4. 梯度噪音

  • 提高模型对初始化的鲁棒性

不同场景下算法选择建议

  • 小规模数据集:可以选择批梯度下降法或小批量梯度下降法
  • 大规模数据集:随机梯度下降法或小批量梯度下降法更为合适
  • 稀疏数据:Adagrad 或 RMSprop 是不错的选择
  • 深度神经网络:Adam、RMSprop 或动量法可以加速收敛并提高稳定性
  • 分布式计算:Downpour SGD 或 TensorFlow 框架支持大规模分布式计算
  • 需要快速收敛:Nesterov加速梯度下降法(NAG)或 Adam

通过合理选择和组合这些算法和策略,可以在不同的应用场景中获得更好的优化效果,提高模型的性能和训练效率。

吴恩达:机器学习的六个核心算法!

回归算法,逻辑回归,决策树算法, 神经网络,K-means,梯度下降(本文)

- 科研为国分忧,创新与民造福 -

日更时间紧任务急,难免有疏漏之处,还请大侠海涵

内容仅供学习交流之用,部分素材来自网络,侵联删

[ 算法金,碎碎念 ]

全网同名,日更万日,让更多人享受智能乐趣

如果觉得内容有价值,烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;

同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1840744.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python接口测试实战之搭建自动化测试框架

🍅 视频学习:文末有免费的配套视频可观看 🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 一.数据分离:从Excel中读取数据 之前的用例中,数据直接写在代码文件里,不…

OpenAI新模型发布,免费开放GPT-4o!但只开放一点点...

GPT-4o 中的“o”代表“omni”——指的是 GPT-4o 的多模态。 该模型将向免费客户开放,这意味着任何人都可以通过 ChatGPT 访问 OpenAI 最先进的技术。 GPT-4o 是 OpenAI 昨天晚上发布的新旗舰模型,可以实时推理音频、视觉和文本。 据官方介绍&#xff0…

椭圆的标准方程与协方差矩阵的特征值和特征向量的关系

椭圆的标准方程与协方差矩阵的特征值和特征向量的关系 flyfish 单位圆 :单位圆表示在标准正交基下的分布。 椭圆 :通过协方差矩阵的特征向量和特征值变换得到的椭圆,表示数据在新的坐标系下的分布。 特征向量 :红色箭头表示特征…

【C语言】一维数组(详解)

目录 1. 数组的概念 2. 一维数组的创建和初始化 3. 一维数组的使用 4. 一维数组在内存中的存储 5. sizeof 计算数组元素个数 正文开始—— 1. 数组的概念 数组是一组相同类型元素的集合。 数组中存放的是1个或者多个数据,但是数组元素个数不能为0。…

运算放大器(运放)同相放大器电路

设计目标 输入电压ViMin输入电压ViMax输出VoMin输出VoMax电源Vcc电源Vee-1V1V-10V10V15V–15V 设计说明 这种设计将输入信号 Vi 放大,信号增益为 10V/V。输入信号可能来自高阻抗源(例如 MΩ),因为该电路的输入阻抗由运算放大器…

vue3delete请求报403forbidden,前后端解决方式,cookie无效问题

在做开发时,前期已经在Controller类加上CrossOrigin(origins "*"),发送get和post请求都没问题,但遇到delete请求时,又报出跨域问题 一.前端添加proxy代理服务器(未能解决) 在vue.config.js中使…

PHP转Go系列 | 字符串的使用姿势

大家好&#xff0c;我是码农先森。 输出 在 PHP 语言中的输出比较简单&#xff0c;直接使用 echo 就可以。此外&#xff0c;在 PHP 中还有一个格式化输出函数 sprintf 可以用占位符替换字符串。 <?phpecho 码农先森; echo sprintf(码农:%s, 先森);在 Go 语言中调用它的输…

pikachu靶场之XSS漏洞测试

一、环境配置 1.pikachu官网下载 下载地址&#xff1a;https://github.com/zhuifengshaonianhanlu/pikachu 2.百度网盘&#xff08;里面含有pikachu跟phpstudy&#xff09; 链接&#xff1a;pikachu下载 密码&#xff1a;abcd 配置&#xff1a;pikachu下载及安装-图文详解…

14K屏FPGA通过MIPI接口点亮

一、屏参数 屏分辨率为13320*5120&#xff0c;MIPI接口8 LANE。 二、驱动接口电路 屏偏置电压5.5V&#xff0c;逻辑供电1.8V。8 LANE MIPI&#xff0c;2 PORT。 三、MIPI DSI规范 DCS (Display Command Set)&#xff1a;DCS是一个标准化的命令集&#xff0c;用于命令模式的显…

基于单片机的智能窗户控制系统的设计

摘 要&#xff1a; 根据单片机技术和现代传感器技术 &#xff0c; 本文主要针对基于单片机的智能窗户控制系统的设计进行探讨 &#xff0c; 仅供参考 。 关键词&#xff1a; 单片机 &#xff1b; 智能窗户 &#xff1b; 控制系统 &#xff1b; 设计 在现代科学技术持续发展的带…

融资融券两融利率最低多少?两融利率最低账户怎么申请?

融资融券账户余额理财技巧 融资融券账户不支持货币基金申赎、逆回购等业务&#xff0c;投资者可以将资金大于维保比例300%的部分通过银证转账转出再转入到普通账户&#xff0c;参与证券公司现金理财或逆回购等业务。 融券卖出和还券技巧 融券卖出所得的资金仅能用于买券还券&…

Linux操作系统学习:day05

内容来自&#xff1a;Linux介绍 视频推荐&#xff1a;[Linux基础入门教程-linux命令-vim-gcc/g -动态库/静态库 -makefile-gdb调试]( 目录 day0530、删除用户31、添加和删除用户组创建用户组删除用户组 32、修改密码33、使用tar工具进行压缩和解压缩压缩解压缩 34、使用zip u…

▶《强化学习的数学原理》(2024春)_西湖大学赵世钰 Ch4 值迭代 与 策略迭代 【动态规划 算法】

PPT 截取必要信息。 课程网站做习题。总体 MOOC 过一遍 1、视频 学堂在线 习题 2、过 电子书 补充 【下载&#xff1a; 本章 PDF 电子书 GitHub】 [又看了一遍视频。原来第一次跳过了好多内容。。。] 3、总体 MOOC 过一遍 习题 学堂在线 课程页面链接 中国大学MOOC 课程页面链…

【宠粉赠书】科技图表绘制:R语言数据可视化

为了回馈粉丝们的厚爱&#xff0c;今天小智给大家送上一套科研绘图的必备书籍——《R语言数据可视化&#xff1a;科技图表绘制》。下面我会详细给大家介绍这套图书&#xff0c;文末留有领取方式。 图书介绍 《R语言数据可视化&#xff1a;科技图表绘制》结合编者多年的数据分析…

jenkins安装和使用 (二)

参考视频资料 https://www.bilibili.com/video/BV1bS4y1471A?p10&vd_sourcee0dcd147bd5d730317de804d788cd6f9 安装maven插件 新建item 配置构建信息 项目地址替换为自己的实际地址 其余保持先保持默认 先然后在主页就看到了这个项目 查看控制台输出 稍等一…

Java 17的新特性

Java 17引入了多项新特性&#xff0c;以下是一些重要的更新&#xff1a; 增强的伪随机数生成器&#xff08;JEP 356&#xff09; Java 17为伪随机数生成器&#xff08;PRNG&#xff09;提供了新的接口类型和实现&#xff0c;包括可跳转的PRNG和另一类可拆分的PRNG算法&#xf…

聊聊 Mybatis 动态 SQL

这篇文章&#xff0c;我们聊聊 Mybatis 动态 SQL &#xff0c;以及我对于编程技巧的几点思考 &#xff0c;希望对大家有所启发。 1 什么是 Mybatis 动态SQL 如果你使用过 JDBC 或其它类似的框架&#xff0c;你应该能理解根据不同条件拼接 SQL 语句有多痛苦&#xff0c;例如拼…

得物面试:什么是零复制?说说 零复制 底层原理?(吊打面试官)

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中&#xff0c;最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格&#xff0c;遇到很多很重要的零复制的问题&#xff1a; 说一说Rocketmq、是如何实现每秒上百万数据的超…

ACIS采用自底向上的方式创建box

在学习任何CAD几何内核的时候&#xff0c;首先需要学习的是这个几何内核的几何拓扑数据结构&#xff0c;学习完毕后&#xff0c;一个很好的练习是自己采用底层的几何、拓扑构建API&#xff0c;创建一个box。通过这个练习&#xff0c;可以加深初学者对所学几何内核数据结构的理解…

AXI三板斧之Outstanding、Out-of-order、interleaving

1、AXI三板斧之Outstanding 可以不用等单个命令的响应&#xff0c;直接连续发送N个命令&#xff08;N>1&#xff09;&#xff0c;假设Slave端的Outstanding能力为N时&#xff08;N>1&#xff09;&#xff0c;那么Master端可以在Slave不返回读数据的情况下&#xff0c;连…