Day872.事务间是否需要隔离 -MySQL实战

news2024/11/18 21:46:36

事务间是否需要隔离

Hi,我是阿昌,今天学习记录的是关于事务间是否需要隔离的内容。

创建的视图是静态视图,当前视图对应的数据由字段的当前值加上回滚段计算得到。

事务隔离级别 的时候提到过,如果是可重复读隔离级别,事务 T 启动的时候会创建一个视图 read-view,之后事务 T 执行期间,即使有其他事务修改了数据,事务 T 看到的仍然跟在启动时看到的一样。

也就是说,一个在可重复读隔离级别下执行的事务,好像与世无争,不受外界影响。但是,在行锁,一个事务要更新一行,如果刚好有另外一个事务拥有这一行的行锁,它又不能这么超然了,会被锁住,进入等待状态。

问题是,既然进入了等待状态,那么等到这个事务自己获取到行锁要更新数据的时候,它读到的值又是什么呢?

下面是一个只有两行的表的初始化语句。

CREATE TABLE `t` (
  `id` int(11) NOT NULL,
  `k` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB;

insert into t(id, k) values(1,1),(2,2);

图 1 事务 A、B、C 的执行流程

这里,需要注意的是事务的启动时机

begin/start transaction 命令并不是一个事务的起点,在执行到它们之后的第一个操作 InnoDB 表的语句,事务才真正启动。如果你想要马上启动一个事务,可以使用 start transaction with consistent snapshot 这个命令。

第一种启动方式,一致性视图是在执行第一个快照读语句时创建的;
第二种启动方式,一致性视图是在执行 start transaction with consistent snapshot 时创建的。

还需要注意的是,例子中如果没有特别说明,都是默认 autocommit=1

在这个例子中,事务 C 没有显式地使用 begin/commit,表示这个 update 语句本身就是一个事务,语句完成的时候会自动提交。

事务 B 在更新了行之后查询 ; 事务 A 在一个只读事务中查询,并且时间顺序上是在事务 B 的查询之后。

这时,如果告诉你事务 B 查到的 k 的值是 3,而事务 A 查到的 k 的值是 1,是不是感觉有点晕呢?

所以,其实就是说这个问题,借由把这个疑惑解开的过程,能够帮助对 InnoDB 的事务和锁有更进一步的理解。


在 MySQL 里,有两个“视图”的概念

  • 一个是 view。它是一个用查询语句定义的虚拟表,在调用的时候执行查询语句并生成结果。创建视图的语法是 create view … ,而它的查询方法与表一样。
  • 另一个是 InnoDB 在实现 MVCC 时用到的一致性读视图,即 consistent read view,用于支持 RC(Read Committed,读提交)和 RR(Repeatable Read,可重复读)隔离级别的实现。

没有物理结构,作用是事务执行期间用来定义“能看到什么数据”。

事务隔离中,解释过一遍 MVCC 的实现逻辑。

为了说明查询和更新的区别,换一个方式来说明,把 read view 拆开。


一、“快照”在 MVCC 里是怎么工作的?

可重复读隔离级别下,事务在启动的时候就“拍了个快照”。注意,这个快照是基于整库的。这时,会说这看上去不太现实啊。如果一个库有 100G,那么启动一个事务,MySQL 就要拷贝 100G 的数据出来,这个过程得多慢啊。可是,平时的事务执行起来很快啊。实际上,并不需要拷贝出这 100G 的数据。先来看看这个快照是怎么实现的。

InnoDB 里面每个事务有一个唯一的事务 ID,叫作 transaction id。它是在事务开始的时候向 InnoDB 的事务系统申请的,是按申请顺序严格递增的。而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id

同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。也就是说,数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id。

如图 2 所示,就是一个记录被多个事务连续更新后的状态。

图 2 行状态变更图

图中虚线框里是同一行数据的 4 个版本,当前最新版本是 V4,k 的值是 22,它是被 transaction id 为 25 的事务更新的,因此它的 row trx_id 也是 25。

可能会问,前面不是说,语句更新会生成 undo log(回滚日志)吗?那么,undo log 在哪呢?

实际上,图 2 中的三个虚线箭头,就是 undo log;而 V1、V2、V3 并不是物理上真实存在的,而是每次需要的时候根据当前版本和 undo log 计算出来的。比如,需要 V2 的时候,就是通过 V4 依次执行 U3、U2 算出来。

明白了多版本和 row trx_id 的概念后,再来想一下,InnoDB 是怎么定义那个“100G”的快照的。

按照可重复读的定义,一个事务启动的时候,能够看到所有已经提交的事务结果。但是之后,这个事务执行期间,其他事务的更新对它不可见

因此,一个事务只需要在启动的时候声明说,“以启动的时刻为准,如果一个数据版本是在启动之前生成的,就认;如果是我启动以后才生成的,就不认,必须要找到它的上一个版本”。

当然,如果“上一个版本”也不可见,那就得继续往前找。还有,如果是这个事务自己更新的数据,它自己还是要认的。

在实现上, InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。

“活跃”指的就是,启动了但还没提交。数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。

这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。而数据版本的可见性规则,就是基于数据的 row trx_id 和这个一致性视图的对比结果得到的。

这个视图数组把所有的 row trx_id 分成了几种不同的情况。

图 3 数据版本可见性规则

这样,对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:

  1. 如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的
  2. 如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;
  3. 如果落在黄色部分,那就包括两种情况
    • a. 若 row trx_id 在数组中,表示这个版本是由还没提交的事务生成的,不可见;
    • b. 若 row trx_id 不在数组中,表示这个版本是已经提交了的事务生成的,可见。

比如,对于图 2 中的数据来说,如果有一个事务,它的低水位是 18,那么当它访问这一行数据时,就会从 V4 通过 U3 计算出 V3,所以在它看来,这一行的值是 11。

有了这个声明后,系统里面随后发生的更新,是不是就跟这个事务看到的内容无关了呢?

因为之后的更新,生成的版本一定属于上面的 2 或者 3(a) 的情况,而对它来说,这些新的数据版本是不存在的,所以这个事务的快照,就是“静态”的了。

InnoDB 利用了“所有数据都有多个版本”的这个特性,实现了“秒级创建快照”的能力。


继续看一下图 1 中的三个事务,分析下事务 A 的语句返回的结果,为什么是 k=1。

这里,不妨做如下假设:

  1. 事务 A 开始前,系统里面只有一个活跃事务 ID 是 99;
  2. 事务 A、B、C 的版本号分别是 100、101、102,且当前系统里只有这四个事务;
  3. 三个事务开始前,(1,1)这一行数据的 row trx_id 是 90。

这样,事务 A 的视图数组就是[99,100], 事务 B 的视图数组是[99,100,101], 事务 C 的视图数组是[99,100,101,102]。

为了简化分析,先把其他干扰语句去掉,只画出跟事务 A 查询逻辑有关的操作:

图 4 事务 A 查询数据逻辑图

从图中可以看到,第一个有效更新是事务 C,把数据从 (1,1) 改成了 (1,2)。这时候,这个数据的最新版本的 row trx_id 是 102,而 90 这个版本已经成为了历史版本。

第二个有效更新是事务 B,把数据从 (1,2) 改成了 (1,3)。这时候,这个数据的最新版本(即 row trx_id)是 101,而 102 又成为了历史版本。

在事务 A 查询的时候,其实事务 B 还没有提交,但是它生成的 (1,3) 这个版本已经变成当前版本了。但这个版本对事务 A 必须是不可见的,否则就变成脏读了。

现在事务 A 要来读数据了,它的视图数组是[99,100]。

当然了,读数据都是从当前版本读起的。

所以,事务 A 查询语句的读数据流程是这样的:

  1. 找到 (1,3) 的时候,判断出 row trx_id=101,比高水位大,处于红色区域,不可见;
  2. 接着,找到上一个历史版本,一看 row trx_id=102,比高水位大,处于红色区域,不可见;
  3. 再往前找,终于找到了(1,1),它的 row trx_id=90,比低水位小,处于绿色区域,可见。

这样执行下来,虽然期间这一行数据被修改过,但是事务 A 不论在什么时候查询,看到这行数据的结果都是一致的,所以称之为一致性读

这个判断规则是从代码逻辑直接转译过来的,但是正如你所见,用于人肉分析可见性很麻烦。

所以,来给翻译一下。

一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况:

  1. 版本未提交,不可见;
  2. 版本已提交,但是是在视图创建后提交的,不可见;
  3. 版本已提交,而且是在视图创建前提交的,可见。

现在,我们用这个规则来判断图 4 中的查询结果,事务 A 的查询语句的视图数组是在事务 A 启动的时候生成的,这时候:

  • (1,3) 还没提交,属于情况 1,不可见;
  • (1,2) 虽然提交了,但是是在视图数组创建之后提交的,属于情况 2,不可见;
  • (1,1) 是在视图数组创建之前提交的,可见。

去掉数字对比后,只用时间先后顺序来判断,分析起来是不是轻松多了。


二、更新逻辑

细心的同学可能有疑问了:

事务 B 的 update 语句,如果按照一致性读,好像结果不对哦?

看图 5 中,事务 B 的视图数组是先生成的,之后事务 C 才提交,不是应该看不见 (1,2) 吗,怎么能算出 (1,3) 来?

图 5 事务 B 更新逻辑图

是的,如果事务 B 在更新之前查询一次数据,这个查询返回的 k 的值确实是 1。

但是,当它要去更新数据的时候,就不能再在历史版本上更新了,否则事务 C 的更新就丢失了。因此,事务 B 此时的 set k=k+1 是在(1,2)的基础上进行的操作。

所以,这里就用到了这样一条规则:更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)。

因此,在更新的时候,当前读拿到的数据是 (1,2),更新后生成了新版本的数据 (1,3),这个新版本的 row trx_id 是 101。

所以,在执行事务 B 查询语句的时候,一看自己的版本号是 101,最新数据的版本号也是 101,是自己的更新,可以直接使用,所以查询得到的 k 的值是 3。这里提到了一个概念,叫作当前读

其实,除了 update 语句外,select 语句如果加锁,也是当前读。

所以,如果把事务 A 的查询语句 select * from t where id=1 修改一下,加上 lock in share mode 或 for update,也都可以读到版本号是 101 的数据,返回的 k 的值是 3。

下面这两个 select 语句,就是分别加了读锁(S 锁,共享锁)和写锁(X 锁,排他锁)。

mysql> select k from t where id=1 lock in share mode;
mysql> select k from t where id=1 for update;

再往前一步,假设事务 C 不是马上提交的,而是变成了下面的事务 C’,会怎么样呢?

图 6 事务 A、B、C'的执行流程

事务 C’的不同是,更新后并没有马上提交,在它提交前,事务 B 的更新语句先发起了。

虽然事务 C’还没提交,但是 (1,2) 这个版本也已经生成了,并且是当前的最新版本。

那么,事务 B 的更新语句会怎么处理呢?这时候,我们在上一篇文章中提到的“两阶段锁协议”就要上场了。

事务 C’没提交,也就是说 (1,2) 这个版本上的写锁还没释放。

而事务 B 是当前读,必须要读最新版本,而且必须加锁,因此就被锁住了,必须等到事务 C’释放这个锁,才能继续它的当前读。

图 7 事务 B 更新逻辑图(配合事务 C')
到这里,把一致性读、当前读和行锁就串起来了。

现在,回到开头的问题:事务的可重复读的能力是怎么实现的?

可重复读的核心就是一致性读(consistent read);而事务更新数据的时候,只能用当前读。

如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。

而读提交的逻辑和可重复读的逻辑类似,它们最主要的区别是:

  • 在可重复读隔离级别下,只需要在事务开始的时候创建一致性视图,之后事务里的其他查询都共用这个一致性视图;
  • 在读提交隔离级别下,每一个语句执行前都会重新算出一个新的视图。

那么,再看一下,在读提交隔离级别下,事务 A 和事务 B 的查询语句查到的 k,分别应该是多少呢?

这里需要说明一下,“start transaction with consistent snapshot; ”的意思是从这个语句开始,创建一个持续整个事务的一致性快照。

所以,在读提交隔离级别下,这个用法就没意义了,等效于普通的 start transaction。

下面是读提交时的状态图,可以看到这两个查询语句的创建视图数组的时机发生了变化,就是图中的 read view 框。(注意:这里,用的还是事务 C 的逻辑直接提交,而不是事务 C’)

图 8 读提交隔离级别下的事务状态图

这时,事务 A 的查询语句的视图数组是在执行这个语句的时候创建的,时序上 (1,2)、(1,3) 的生成时间都在创建这个视图数组的时刻之前。

但是,在这个时刻:

  • (1,3) 还没提交,属于情况 1,不可见;
  • (1,2) 提交了,属于情况 3,可见。

所以,这时候事务 A 查询语句返回的是 k=2。

显然地,事务 B 查询结果 k=3。


三、总结

小结InnoDB 的行数据有多个版本,每个数据版本有自己的 row trx_id,每个事务或者语句有自己的一致性视图。

普通查询语句是一致性读,一致性读会根据 row trx_id 和一致性视图确定数据版本的可见性。

  • 对于可重复读,查询只承认在事务启动前就已经提交完成的数据;
  • 对于读提交,查询只承认在语句启动前就已经提交完成的数据;

而当前读,总是读取已经提交完成的最新版本。

为什么表结构不支持“可重复读”?

这是因为表结构没有对应的行数据,也没有 row trx_id,因此只能遵循当前读的逻辑。

当然,MySQL 8.0 已经可以把表结构放在 InnoDB 字典里了,也许以后会支持表结构的可重复读。


又到思考题时间了。
用下面的表结构和初始化语句作为试验环境,事务隔离级别是可重复读。

现在,我要把所有“字段 c 和 id 值相等的行”的 c 值清零,但是却发现了一个“诡异”的、改不掉的情况。

请构造出这种情况,并说明其原理。

mysql> CREATE TABLE `t` (
  `id` int(11) NOT NULL,
  `c` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB;
insert into t(id, c) values(1,1),(2,2),(3,3),(4,4);

复现出来以后,请再思考一下,在实际的业务开发中有没有可能碰到这种情况?

应用代码会不会掉进这个“坑”里,又是怎么解决的呢?

(1)事务A:begin;select * from t; 事务B:update t set c=0 where id=c;事务B隐式提交
(2)此时事务A执行update t set c=0 where id=c;这里update是当前读,读取的是最新版本的记录,那么id=c的记录已经在B事务中被修改了,此时update就失败了
(3)事务A继续执行查询select * from t;查询是一致性读,读的是begin后面执行的那句查询创建的视图


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/183863.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1457. 二叉树中的伪回文路径

1457. 二叉树中的伪回文路径题目算法设计:深度优先搜索题目 传送门:https://leetcode.cn/problems/pseudo-palindromic-paths-in-a-binary-tree/ 算法设计:深度优先搜索 如何判断一组数字是否存在一个回文串组合? 如 [1, 2, 1]…

css元素显示模式(行内、块级、行内块)

1.块级元素 显示特点&#xff1a; 1、独占一行&#xff08;一行只能显示一个&#xff09; 2、宽度默认是父元素的宽度&#xff0c;高度默认由内容撑开 3、可以设置宽高 代表标签&#xff1a; div、p、h系列、ul、li、dl、dt、dd、form、header、anv、footer <style>div…

电脑数据怎么迁移?6种旧电脑数据传输到新电脑方法分享

如今&#xff0c;我们拥有如此多的设备&#xff0c;从一个设备跳到另一个设备似乎是一项艰巨的任务。平均而言&#xff0c;一个人可能拥有一台电脑、一部智能手机和一台平板电脑。但是&#xff0c;如果您有多台计算机或要换一台新计算机怎么办&#xff1f;您可能在互联网上问过…

电脑录像软件推荐?分享3款,简单好用且方便

​在日常生活中&#xff0c;我们经常会遇到临时有事情需要外出处理的时候&#xff0c;但在如果正好在上网课或者开会议、听讲座的时候&#xff0c;这时候外出很容易会错过一些重要的内容。这个时候&#xff0c;就需要借助电脑录像软件了。电脑录像软件推荐什么&#xff1f;今天…

Docker consul

目录 一、Docker consul简介 二、Consul优势 三、Consul中的概念 四、部署 1、consul服务器配置 2、查看集群信息 3、在浏览器上进到consul的界面进行管理 4、容器服务自动注册到consul集群 5、consul节点配置nginx 6、配置模板信息 7、配置并启动consul-template …

Java创建pdf的代码

一、概述 以下代码可以在指定文件夹内创建一个简历pdf。 以下代码生成pdf&#xff0c;主要是设置cell所占的行、列、内容。 二、代码 1.需要的jar包 itext-asian-5.2.0.jar itextpdf-5.5.5.jar2.个人信息类MsgUtil.java 这个类里面放了个人信息&#xff1b;也可以放多个人…

Python量化投资——股票择时到底能否赚钱?TA-Lib中33种技术指标有效性回测研究

TA-Lib中33种技术指标回测研究Python量化投资——TA-Lib中33种股票择时技术指标的有效性研究为什么要做这个评测技术指标清单评测方法评测工具期待你的意见Python量化投资——TA-Lib中33种股票择时技术指标的有效性研究 为什么要做这个评测 技术指标是股票交易中最常用的技术…

CSS 常见布局

文章目录CSS 常见布局单列布局单列布局&#xff08;不通栏&#xff09;单列布局&#xff08;通栏&#xff09;双列布局floatoverflow:hiddenflexgridCSS 常见布局 单列布局 单列布局&#xff08;不通栏&#xff09; <!DOCTYPE html> <html><head><meta …

推荐系统之推荐中心逻辑

5.5 推荐中心逻辑 学习目标 目标 无应用 无 5.5.1 推荐中心作用 推荐中一般作为整体召回结果读取与排序模型进行排序过程的作用&#xff0c;主要是产生推荐结果的部分。 5.5.2 推荐目录 server目录为整个推荐中心建立的目录 recall_service.:召回数据读取目录reco_centor:推…

如何利用 Selenium 对已打开的浏览器进行爬虫!

大家好&#xff0c;我是安果&#xff01;在对某些网站进行爬虫时&#xff0c;如果该网站做了限制&#xff0c;必须完成登录才能展示数据&#xff0c;而且只能通过短信验证码才能登录这时候&#xff0c;我们可以通过一个已经开启的浏览器完成登录&#xff0c;然后利用程序继续操…

STM32—超声波测距

超声波简介 超声波测距模块是用来测量距离的一种产品&#xff0c;通过发送和收超声波&#xff0c;利用时间差和声音传播速度&#xff0c; 计算出模块到前方障碍物的距离。 型号&#xff1a;HC-SR04 时序图 怎么让它发送波 Trig触发信号&#xff0c;给Trig端口至少10us的高电平…

“华为杯”研究生数学建模竞赛2005年-【华为杯】A题:城市交通管理中的出租车规划(附获奖论文)

赛题描述 A: Highway Traveling time Estimate and Optimal Routing Ⅰ Highway traveling time estimate is crucial to travelers. Hence, detectors are mounted on some of the US highways. For instance, detectors are mounted on every two-way six-lane highways o…

Postman使用详解

一、常见类型的接口请求查询参数接口接口地址中&#xff0c;&#xff1f;问号后面的部分&#xff0c;即查询参数&#xff1b;该部分内容由键值对组成&#xff0c;有多个时&#xff0c;用&符号分隔。请求方法&#xff1a;GET表单类型接口1&#xff09;HTTP请求&#xff0c;一…

电脑如何重装系统?Win10系统安装只需这两招!

电脑在日常生活和工作中是使用的比较多的。随着时间的推移&#xff0c;电脑越来越卡&#xff0c;系统越来越慢&#xff0c;或者是由于其他情况&#xff0c;有些人会选择对电脑进行重新安装。 但是很多人不知道系统安装前要注意什么&#xff0c;以及安装有哪些方法&#xff0c;…

论文笔记:Modeling Kinect Sensor Noise for Improved 3D Reconstruction and Tracking

文章目录概述效果如何&#xff1f;take home messagelateral noise 模型axial noise 模型实验实验设定lateral noise与axial noise的定义axial noise与lateral noise的提取噪声分布的结果和建模最终拟合得到的lateral noise模型最终拟合得到的axial noise模型应用噪声模型至Kin…

【Spring源码】插播一个创建代理对象的wrapIfNecessary()方法

在文章【分析向】没有三级缓存会导致什么&#xff1f; 中&#xff0c;提到过一个方法——wrapIfNecessary()&#xff0c;就是在这个方法中为Bean创建的代理对象&#xff0c;介于篇幅原因&#xff0c;当时并咩有详细&#x1f50e;分析这个方法&#xff0c;这篇文章我们进去wrapI…

第三章 ArcGIS坐标系与投影变换

文章目录第一节 坐标系的概念1.1 坐标1.2 坐标系2 基准面介绍2.1 基准面概念2.2几种基准面的说明2.3 椭球体参数的区别3 坐标系的分类3.1 两种坐标系3.2 区别3.3 度&#xff08;分、秒&#xff09;和米的转换&#xff08;高级&#xff09;4 投影坐标系4.1 两种投影方法介绍4.2 …

5、判定法

定义 判定表法&#xff1a; 分析和表述若干输入条件下&#xff0c;被测对象针对这些输入做出响应的一种工具在遇到逻辑复杂的业务时&#xff0c;可以利用判定表理清期间的逻辑关系。 重要概念 条件&#xff1a; 条件桩&#xff1a;需求规格说明书定义的被测对象的所有输入条…

图解Attention

深度学习知识点总结 专栏链接: https://blog.csdn.net/qq_39707285/article/details/124005405 此专栏主要总结深度学习中的知识点&#xff0c;从各大数据集比赛开始&#xff0c;介绍历年冠军算法&#xff1b;同时总结深度学习中重要的知识点&#xff0c;包括损失函数、优化器…

面试官:JVM是如何判定对象已死的?

本文已收录至Github&#xff0c;推荐阅读 &#x1f449; Java随想录 知道的越多&#xff0c;才知知道的越少。——苏格拉底 文章目录引用计数算法可达性分析算法引用类型Dead Or Alive永久代真的"永久"吗&#xff1f;垃圾收集算法标记-清除算法标记-复制算法标记-整理…