振动分析-4-振动传感器的安装部署

news2024/12/25 11:23:09

参考(电机、减速机、风机)振动传感器部署指南
设备状态监测的测点通常选在设备轴承或靠近轴承的位置,通过在轴向、垂直方向、水平方向部署振动传感器来实现设备振动信号的采集。但在实际工作中,考虑安装空间和硬件成本,部署过程通常被两个问题困扰:
(1)如何高效利用状态监测传感器,即传感器安装在什么位置,既可以减少传感器的使用数量,还可以尽可能的保证设备状态监测的效果;
(2)对于可以同时测量多方向振动的传感器,如果不同方向的性能指标存在差异,应当优先测量哪个方向更为合理。

参考振动状态监测的相关标准,并结合设备故障诊断的实际经验,我们总结出选取状态监测传感器安装部署位置和方向时,应当遵循如下原则:
(1)安装位置应尽量选择设备结构刚度较高的部位,例如设备的轴承座、端盖等,减少振动信息在传递路径中的损失;
(2)安装方向应优先选择振动强度大的方向,例如与安装管道垂直的方向、设备的受力方向、齿轮的啮合方向等,提高振动信号的幅值。
下面我们针对现场常见的几类工业设备(电机、减速机、风机),具体说明进行设备状态监测时,振动传感器推荐的安装位置及安装方向。

1 电机

1.1 卧式电机

可靠安装在刚性支撑上的卧式电机,其驱动端带动负载设备,振动强度大于非驱动端,设备约束方向为垂直方向,因此大多数情况下水平方向的振动大于垂直方向

进一步考虑到传输距离越长,振动信号衰减越大的情况,卧式电机若选取单轴振动传感器,安装位置和方向的优先级由高到低依次为:驱动端水平→驱动端垂直→驱动端轴向→非驱动端水平→非驱动端垂直
在这里插入图片描述
若使用3轴传感器,则应优先测量水平方向的振动,安装位置和方向优先级由高到低为:驱动端水平→非驱动端水平
在这里插入图片描述

1.2 立式电机

通常情况下,立式电机的驱动端与安装面距离近、约束较好,非驱动端距离安装面较远,振动强度大。

因此,立式电机部署单轴或3轴传感器时,均应优先安装在远离安装平面的非驱动端,条件不允许时可安装在驱动端。
在这里插入图片描述

2 传动部件

2.1 直齿减速机

齿轮箱按传动级数可分为单级齿轮箱和多级齿轮箱。监测齿轮箱的运行状态需至少在输入轴和输出轴上各安装一台振动传感器。对于内部为直齿轮的直齿减速机,其受力方向主要沿径向

因此,若选取单轴振动传感器,安装位置和方向的优先级由高到低依次为:输入/输出端垂直→输入/输出端水平→输入/输出端轴向
在这里插入图片描述
若选取3轴传感器,则应优先测量垂直方向的振动,在输入和输出轴的垂直方向安装传感器即可。
在这里插入图片描述
x:水平
y:轴向
z:垂直

2.2 斜齿、伞齿减速机

对于斜齿或伞齿减速机,其受力方向主要沿轴向,应重点监测主轴方向的振动信号。

若采用单轴振动传感器,安装位置和方向的优先级由高到低依次为:输入/输出端轴向→输入/输出端水平→输入/输出端垂直
在这里插入图片描述
若采用3轴传感器进行状态监测,应优先测量轴向的振动,选择在输入和输出轴的轴向安装传感器即可。
在这里插入图片描述

3 泵/风机

3.1 悬臂式离心机/风机

悬臂式离心机/风机的轴承在叶轮一侧,测点通常选取在靠近驱动端轴承的位置。需要注意的是,泵机/风机的进口和出口管道同样对设备起到约束作用,一定程度上抑制了设备在管道方向上的振动,在条件允许的情况下,振动测量方向应当与进口管道和出口管道垂直。但是相比泵机底部螺栓的固定,管道的约束效果有限,当管道方向为水平方向时,仍优先在水平方向安装振动传感器。

使用单轴传感器进行悬臂式离心机/风机的状态监测时,安装位置和方向的优先级由高到低依次为:驱动端水平→驱动端垂直→驱动端轴向
在这里插入图片描述
使用3轴传感器进行状态监测,则优先选择测量水平方向振动。
在这里插入图片描述

3.2 双支撑式离心机/风机

相比单支撑离心机/风机,双支撑离心机/风机在叶轮两侧均有轴承,因此在监测时需要在驱动端和非驱动端均布置测点。
采用单轴传感器时,安装的优先级由高到低依次为:驱动端水平→驱动端垂直→驱动端轴向→非驱动端水平→非驱动端垂直→非驱动端轴向
在这里插入图片描述

若采用3轴传感器,则应优先测量水平方向的振动,驱动端的安装优先级高于非驱动端。
在这里插入图片描述

3.3 罗茨风机/双螺杆压缩机

罗茨风机/双螺杆压缩机中扇叶的啮合方向为垂直方向,因此垂直方向的振动相对较大。对于主动轴和从动轴轴心距离小于800mm的罗茨风机或双螺杆压缩机,每端(驱动端/非驱动端)可以使用一台传感器,在两轴中间进行垂直方向的振动测量。如果主动轴和从动轴轴心距离超过800mm,主动轴和从动轴垂直方向的振动需要分别安装2台传感器进行采集。
若采用单轴传感器,由于主动轴和从动轴转速一致、轴承型号一致,考虑到传感器的成本,出现问题可不定位故障轴承,可针对一根轴来进行状态监测。
(1) 若选择主动轴监测,传感器安装位置的优先级由高到低依次为:驱动端主动轴垂直→驱动端主动轴轴向→非驱动端主动轴垂直→非驱动端主动轴水平→驱动端主动轴水平→非驱动端主动轴轴向。
(2) 若选择从动轴,安装位置的优先级变为:驱动端从动轴垂直→驱动端从动轴轴向→非驱动端从动轴垂直→非驱动端从动轴水平→驱动端从动轴水平→非驱动端从动轴轴向。
在这里插入图片描述

4 安装固定方式

振动传感器有多种安装方式:手持探针、蜂蜡、双面胶、磁座、胶粘和螺栓等方式。不同的安装方式对应不同的安装刚度,因而整个传感器系统的自振频率会不同。安装刚度越大,传感器系统的自振频率越高,能用于测量的频带也就越高。因此,关心的频带越高,传感器的安装刚度应越大。在这几种安装方式中,螺栓连接安装刚度最大,但是这时的安装是一种有损安装,因需要在结构表面开螺纹孔。

4.1 振动传感器安装位置

振动传感器安装要与被测设备良好固定,保证紧密接触,连接牢固,振动过程中不能有松动。因此,要求安装表面平整,不能有油污、尘土、碎屑等杂物。当安装平面不平整时,应加工使之平整。当结构表面有油漆,也应该去除表面油漆之后再安装传感器。

当用磁座安装时,磁座应当安全牢靠地吸附在测量位置表面上,如下图所示:
在这里插入图片描述

4.2 振动传感器安装方向

振动传感器的测振方向应该与待测方向一致,否则,会造成测量幅值误差。不同的测试要求不同的传感器安装方向。测量位置产生的振动依赖于传感器的安装方向,不同的方向振动幅值是不相同的。应根据测试要求将传感器安装在待测方向上。如果传感器方向偏离测试方向,那么此时横向运动可能远大于轴向运动,此类误差将会特别明显。
在这里插入图片描述

4.3 振动传感器安装技巧

当用胶粘时,应沿垂直胶粘平面方向用力按压传感器,使传感器底部的胶形成较薄的一层避免胶层太厚,导致将高频阻隔掉。

当使用磁座安装时,由于磁座有吸力,因此安装传感器时应十分小心。若通过磁力垂直吸附在结构表面,由于瞬时的磁力,会导致传感器受到撞击,影响精度。正确的做法时使磁座倾斜一定角度靠近安装表面完成安装。

传感器安装后,信号传输导线应固定,同时传感器与导线的接头应紧固连接,测试过程中不能出现松动。固定导线时,接头处的导线应处于舒展状态,不应拉紧受力。导线固定有三个方面的好处,

第一,当传感器松动,与被测结构松开时,不会直接摔到地上,损坏传感器,因为有导线拉着。
第二,不固定的传输导线在测量过程中发生晃动,会拍打被测结构,导致出现新的振源,这一点特别是模态测试时,需要特别注意。
第三,传输导线出现弯曲,拉伸等可能会引起导体与屏蔽层之间局部电容或电荷的变化,引入噪声。
其他方面主要是考虑高温、防潮和绝缘等问题。户外高温天气进行测量时,应考虑高温对传感器的影响。对于室外需要隔夜测量时,应考虑传感器的防潮问题。

4.4 总结

振动传感器安装的总原则:传感器的安装位置应能体现结构的振动特性,应该仔细地检查安装表面是否有污染和表面平滑,如有需要应加工使之平整。使传感器的测振方向和测量方向的偏差减到最小,否则将导致相当于横向灵敏度所引起的误差。安装时,注意安装技巧,尽量减少安装工件带来的影响。安装时安装刚度应尽量大,这样可用的频带会越宽。信号电缆应固定于结构表面安装表面的状态和安装方法应在实验记录中进行记录。

5 传感器

5.1 传感器实物

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.2 传感器安装方向

在这里插入图片描述

5.3 传感器安装方法的选择

振动加速度传感器一般安装在轴承座上,可有三个安装方向,分别为X水平方向、Y垂直方向、Z轴向。
水平方向应安装在轴承座的下半部,以水平指向轴心为佳;
垂直方向可安装在轴承座上部并指向轴心;
轴向可安装在轴承座侧面的轴承座下半部,以对准轴承外圈位置安装。
在这里插入图片描述
尽可能靠近轴承安装。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1834784.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用Apache Flink实现实时数据同步与清洗:MySQL和Oracle到目标MySQL的ETL流程

使用Apache Flink实现实时数据同步与清洗:MySQL和Oracle到目标MySQL的ETL流程 实现数据同步的ETL(抽取、转换、加载)过程通常涉及从源系统(如数据库、消息队列或文件)中抽取数据,进行必要的转换&#xff0c…

基于VTK9.3.0+Visual Studio2017 c++实现DICOM影像MPR多平面重建

开源库&#xff1a;VTK9.3.0 开发工具&#xff1a;Visual Studio2017 开发语言&#xff1a;C 实现过程&#xff1a; void initImageActor(double* Matrix, double* center, vtkSmartPointer<vtkImageCast> pImageCast,vtkSmartPointer<vtkImageReslice> imageRe…

Python 库PySpark,一个超级强大的数据处理引擎

目录 01初识 PySpark 为什么选择 PySpark? 安装 PySpark 配置 PySpark 02基本操作 创建 RDD 基本 RDD 操作 03DataFrame 和 Spark SQL 创建 DataFrame 基本 DataFrame 操作 使用 Spark SQL 04机器学习与流处理 …

MacOS - 3 招快速去除桌面上的图标文件

在平时用 Mac 电脑的时候&#xff0c;会产生许多我们不用的或废弃的图标、文件&#xff0c;在 Mac 桌面上显得很乱&#xff0c;不仅影响美观也直接影响了我们工作的心情。下面我们分享 3 招快速去除桌面上的图标或文件的方法&#xff0c;有需要的朋友可以试一试。 1. 右键删除&…

QPushButton、QCheckBox、QRadioPutton、QLineEdit用法

实现LineEdit 文本的 居左、居中、居右设置 实现LineEdit 文本的粗体、斜体、下划线设置 实现LineEdit 控件的 ReadOnly、Enable、ClearButtonEnable的设置 创建资源文件&#xff0c;引入button需要的icon 总体布局 窗体使用垂直布局&#xff0c;每个组合控件内部是水平布局 2个…

游泳耳机品牌排行榜,10大实力超群的游泳耳机分享!

在当今快节奏的生活中&#xff0c;运动已成为许多人不可或缺的一部分&#xff0c;不仅为了健康&#xff0c;也是释放压力、提升生活品质的有效方式。而随着科技与健身的深度融合&#xff0c;智能穿戴设备尤其是专为运动设计的耳机&#xff0c;正逐渐成为运动爱好者的新宠。对于…

nodejs爬虫小红书评论区

发现好像还是爬虫的知识热度比较高&#xff0c;最近一直在加强JS这块。这两天脚本模拟爬BOSS的时候也想着怎么用nodejs&#xff0c;昨天都没更新文章&#xff0c;Q-Q&#xff0c;因为一直failed没啥成果。 使用模块 这边可以看到使用的模块其实也挺多&#xff0c;但主要还是ht…

vue大作业-实现学校官网

vue大作业-实现学校官网 基于vue2实现的学校官网 项目展示 学校官网介绍 欢迎访问我们学校的官方网站&#xff0c;这里为您提供了全面的信息和资源&#xff0c;帮助您更好地了解我们的教育理念、教学资源和学术活动。 首页 首页是您了解我们学校的起点。这里展示了学校的最…

单元测试的思考与实践

1. 什么是单元测试 通常来说单元测试&#xff0c;是一种自动化测试&#xff0c;同时包含一下特性&#xff1a; 验证很小的一段代码&#xff08;业务意义 或者 代码逻辑 上不可再分割的单元&#xff09;&#xff0c;能够更准确的定位到问题代码的位置 能够快速运行&#xff08;…

初始化一个Android项目时,Android Studio会自动生成一些文件和目录结构,以帮助你快速上手开发

当你初始化一个Android项目时&#xff0c;Android Studio会自动生成一些文件和目录结构&#xff0c;以帮助你快速上手开发。这些文件和目录各自有其特定的功能和用途。下面我为你解释一下这些自动生成的内容&#xff1a; 1. app 目录 这是你的应用模块的根目录&#xff0c;包…

C++之模板(三)

1、缺省模板参数 可以将数据结构类型传递进来&#xff0c;比如vectop<T>&#xff08;如果没传就是默认&#xff09; 把vector当作类型参数来传递&#xff0c;从而使用它的接口然后适配出新的接口。实际上这个Stack称为适配器。有时候可能需要vector&#xff0c;但是又需…

深入解析知识付费平台的核心功能模块:满足个性化学习需求的数字化教育新星

在数字化学习的大潮中&#xff0c;知识付费平台已成为教育行业的一颗新星&#xff0c;它以满足用户需求为核心&#xff0c;提供便捷高效的学习渠道。该平台汇聚了各类专业知识&#xff0c;覆盖职业技能、生活兴趣和人文社科等多个领域&#xff0c;满足不同用户的学习需求。同时…

【二】【QT开发应用】QMake和CMake介绍,GN,QT三个窗口类的区别,QMainWindow, QWidget,QDialog

QMake和CMake介绍 qmake&#xff1a;qt独有的代码构建工具, 是一种简洁的构建工具&#xff0c;主要用于生成 Qt 项目的跨平台编译配置文件&#xff0c;语法简单&#xff0c;适合小型和中型项目。 cmake&#xff1a;C通用的代码构建工具&#xff0c;绝大部分C开源项目都使用cm…

MySQL 8.0 版本更新 要点 列表 (8.0-8.0.23)

开头还是介绍一下群&#xff0c;如果感兴趣 PolarDB ,MongoDB ,MySQL ,PostgreSQL ,Redis, Oceanbase, Sql Server 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;可以解决你的问题。加群请联系 liuaustin3 &#xff0c;&#xff08;共 2370 人左右…

楼顶气膜体育馆建设的关键问题解析—轻空间

随着城市化进程的加快和土地资源的日益紧张&#xff0c;楼顶气膜体育馆作为一种新兴的建筑形式备受关注。其轻盈美观、节省用地、施工便捷等特点&#xff0c;使其成为城市空间利用的理想选择。那么&#xff0c;在楼顶建设气膜体育馆有哪些关键问题需要考虑呢&#xff1f; 一、楼…

Simulink代码生成: 状态机的其他建模方法

本文研究状态机建模的一些方法和技巧。 文章目录 1 引入2 状态机建模方法2.1 状态机中的计时2.2 状态机中的计数2.3 转移顺序 3 总结 1 引入 博主一直很喜欢用Simulink中的状态机建模&#xff0c;在这里想记录一下自己平时使用Stateflow建模的心得。因为自身行业所限&#xff…

LayUI使用(二)处理表格会出现下拉框的问题

一、问题描述 如下&#xff0c;layui的表格渲染后&#xff0c;当鼠标悬停在表格项时会出现右侧的下拉框&#xff0c;layui版本较老&#xff0c;原因未知 二、处理办法 在cols里面加上width&#xff0c;也不用每个都加&#xff0c;加一部分表格项即可 注意&#xff1a;若想禁止…

全功能知识付费小程序源码系统 界面支持万能DIY装修 带完整的安装代码包以及搭建部署教程

系统概述 在当今数字化时代&#xff0c;知识付费已经成为一种重要的商业模式。为了满足市场对于便捷、高效、个性化的知识付费解决方案的需求&#xff0c;小编给大家分享一款全功能知识付费小程序源码系统。这一系统不仅具备界面支持万能 DIY 装修的独特优势&#xff0c;还配备…

推荐系统三十六式学习笔记:原理篇.矩阵分解11|facebook是怎么为十亿人互相推荐好友的?

目录 回顾矩阵分解交替最小二乘原理&#xff08;ALS&#xff09;隐式反馈推荐计算总结 上一篇中&#xff0c;我们聊到了矩阵分解&#xff0c;在这篇文章的开始&#xff0c;我再为你回顾一下矩阵分解。 回顾矩阵分解 矩阵分解要将用户物品评分矩阵分解成两个小矩阵&#xff0c…

帕金森患者在饮食上需要注意什么

帕金森病患者在饮食上应该遵循以下几个基本原则&#xff1a; 饮食清淡&#xff1a;应多吃新鲜的水果和蔬菜&#xff0c;如苹果、芹菜、菠菜等&#xff0c;以补充维生素和促进胃肠道蠕动。营养均衡&#xff1a;应多吃富含优质蛋白的食物&#xff0c;如鸡蛋、牛奶&#xff0c;以…