Apollo9.0 PNC源码学习之Control模块(一)—— 控制模块概览

news2024/11/25 6:47:04

0 前言

从planning的角度看control,首先需要了解的就是相关的数据接口,规划出的轨迹(路径+速度)发给Control模块去执行
modules/planning/planning_component/planning_component.cc
planning模块发布轨迹信息

planning_writer_ = node_->CreateWriter<ADCTrajectory>(
      config_.topic_config().planning_trajectory_topic());

modules/control/control_component/control_component.cc
Control模块接受轨迹信息

trajectory_reader_ =
      node_->CreateReader<ADCTrajectory>(planning_reader_config, nullptr);
ACHECK(trajectory_reader_ != nullptr);

ADCTrajectory在modules/common_msgs/planning_msgs/planning.proto定义

message ADCTrajectory {
  optional apollo.common.Header header = 1;

  optional double total_path_length = 2;  // in meters

  optional double total_path_time = 3;    // in seconds

  optional EStop estop = 6;

  optional apollo.planning_internal.Debug debug = 8;

  // is_replan == true mean replan triggered 重规划 
  optional bool is_replan = 9 [default = false];

  // Specify trajectory gear 档位
  optional apollo.canbus.Chassis.GearPosition gear = 10;

  // path data + speed data 路径数据 + 速度数据
  repeated apollo.common.TrajectoryPoint trajectory_point = 12;

  // path point without speed info 路径点
  repeated apollo.common.PathPoint path_point = 13;

  optional apollo.planning.DecisionResult decision = 14;

  optional LatencyStats latency_stats = 15;

  // the routing used for current planning result
  optional apollo.common.Header routing_header = 16;
  enum RightOfWayStatus {
    UNPROTECTED = 0;
    PROTECTED = 1;
  }
  optional RightOfWayStatus right_of_way_status = 17;

  // lane id along current reference line
  repeated apollo.hdmap.Id lane_id = 18;

  // set the engage advice for based on current planning result.
  optional apollo.common.EngageAdvice engage_advice = 19;

  // the region where planning cares most
  message CriticalRegion {
    repeated apollo.common.Polygon region = 1;
  }
  // critical region will be empty when planning is NOT sure which region is
  // critical
  // critical regions may or may not overlap
  optional CriticalRegion critical_region = 20;
  // 轨迹类型(未知、正常、)
  enum TrajectoryType {
    UNKNOWN = 0;       // 未知的轨迹类型,通常用于表示无法确定或识别的情况
    NORMAL = 1;        // 正常的轨迹类型,可能是由标准路径规划算法生成的轨迹
    PATH_FALLBACK = 2; // 路径回退类型,当标准路径规划失败时,可能会使用备用路径规划算法生成轨迹
    SPEED_FALLBACK = 3;// 速度回退类型,当无法满足速度约束条件时,可能会使用备用速度规划算法生成轨迹
    PATH_REUSED = 4;   // 重用路径类型,可能是之前生成的路径的重用或修改版本
    OPEN_SPACE = 5;    // 开放空间类型,通常用于表示在开放环境中的轨迹规划,比如停车或避障等情况
  }
  optional TrajectoryType trajectory_type = 21 [default = UNKNOWN];

  optional string replan_reason = 22;

  // lane id along target reference line
  repeated apollo.hdmap.Id target_lane_id = 23;

  // complete dead end flag
  optional bool car_in_dead_end = 24;

  // output related to RSS
  optional RSSInfo rss_info = 100;
}

1 纵览控制模块

Control模块由control组件包和controller控制器组成,control组件包包含control的整体架构和流程。control根据上游模块输入planning模块的期望轨迹信息,定位模块的当前定位信息,车辆底盘及车身状态信息,通过不同的控制算法计算控制车辆的指令(包含转向、油门、刹车等)输出给canbus模块
在这里插入图片描述

1.1 control_component

control_component是继承于apollo::cyber::TimerComponent的子类,是一个定时触发的组件,通过dag配置可以修改定时器周期。InitProc是入口函数,在初始化函数中,主要实现了ControlTaskAgent的初始化,以及control上游的相关消息的订阅。在Proc执行函数中,分别执行了几步操作:获取订阅消息的当前最新数据–>检查订阅消息输入数据(代码里主要检查了对轨迹线数据是否为空的检查,其它消息数据的检查也可以自行添加)是否完整–>检查订阅消息输入数据时间戳是否在容差范围内(上游消息的数据周期是否超时,如果超时control会有紧急处理)–>更新车身姿态信息–>进行control控制计算(这部分调用ControlTaskAgent的ComputeControlCommand方法,ControlTaskAgent通过配置文件,管理控制器ControlTask的加载和执行顺序,进而完成控制指令的计算)–>输出底盘控制指令

1.2 control_task_base

control_component/controller_task_base/主要包含ControlTaskAgent和ControlTask定义。ControlTaskAgent用来管理ControlTask插件的加载和执行顺序,ControlTask是controller控制器插件的父类,Control/controller控制器插件都继承于ControlTask,目前Apollo已经支持的控制器插件有横向控制器(LatController),纵向控制器(LonController),MPC控制器(MPCController),以及DemoControlTask任务器(DemoControlTask

1.3 controller

Apollo对车辆的控制是将车辆在车体坐标系转换到Frenet坐标系下进行位置跟踪,将车辆跟踪轨迹的运动分解为横向运动和纵向运动,通过对车体的动力学建模,选取合适的状态变量对车辆的跟踪情况进行观测,再通过横向和纵向的控制算法,计算合理的控制指令,达到对轨迹线的跟踪目标
在这里插入图片描述

1.4 文件组织结构及说明
control/
├── control_component/                  // control基础组件
    ├── common                          // 模块全局gflag定义
    ├── conf                            // 模块配置文件,参数文件目录,包含gflags变量的配置,插件启用的配置文件,车辆标定表等通用的配置文件
    ├── controller_task_base/           // control控制器父类组件
    │   ├── common/                     // 数学公式,算法公式,滤波函数,轨迹分析
    │   ├── integration_tests/          // 单元测试文件夹
    │   ├── control_task_agent.cc       // 控制器加载管理器实现文件
    │   ├── control_task_agent.h        // 控制器加载管理器实现文件
    │   └── control_task.h              // 控制器父类实现文件
    ├── dag/                            // 模块启动文件(mainboard)
    ├── docs/                           // 相关模块说明文档
    ├── launch/                         // 模块启动文件(cyber_launch)
    ├── proto/                          // 组件定义的配置文件
    ├── submodules/                     // control子模块
    ├── testdata/                       // 单元测试数据
    ├── tools/                          // 调试工具
    ├── BUILD                           // 构建规则文件
    ├── control_component.cc            // 组件实现的代码文件
    ├── control_component.h             // 组件实现的代码文件
    ├── control_component_test.cc       // 组件单元测试文件
    ├── control.json                    // 打包描述文件
    ├── cyberfile.xml                   // 包管理配置文件
    └── README_cn.md                    // 说明文档
└── controllers/                        // 控制器算法或逻辑任务组件
    ├── demo_control_task               // demo控制器插件包
    │   ├── proto/                      // 控制器的配置定义文件夹
    │   ├── conf/                       // 控制器配置文件夹
    │   ├── BUILD                       // 构建规则文件
    │   ├── cyberfile.xml               // 包管理配置文件
    │   ├── demo_control_task.cc        // demo控制器实现文件
    │   ├── demo_control_task.h         // demo控制器实现文件
    │   └── plugins.xml                 // 插件规则文件
    ├── lat_based_lqr_controller        // LQR横向控制器插件包
    │   ├── proto/                      // 控制器的配置定义文件夹
    │   ├── conf/                       // 控制器配置文件夹
    │   ├── BUILD                       // 构建规则文件
    │   ├── cyberfile.xml               // 包管理配置文件
    │   ├── lat_controller.cc           // LQR横向控制器实现文件
    │   ├── lat_controller.h            // LQR横向控制器实现文件
    │   ├── lat_controller_test.cc      // LQR横向控制器单元测试文件
    │   ├── lateral_controller_test     // 控制器测试数据
    │   └── plugins.xml                 // 插件规则文件
    ├── lon_based_pid_controller        // PID纵向控制器插件包
    │   ├── proto/                      // 控制器的配置定义文件夹
    │   ├── conf/                       // 控制器配置文件夹
    │   ├── BUILD                       // 构建规则文件
    │   ├── cyberfile.xml               // 包管理配置文件
    │   ├── lon_controller.cc           // PID纵向控制器实现文件
    │   ├── lon_controller.h            // PID纵向控制器实现文件
    │   ├── lon_controller_test.cc      // PID纵向控制器单元测试文件
    │   ├── longitudinal_controller_test// 控制器测试数据
    │   └── plugins.xml                 // 插件规则文件
    └── mpc_controller                  // MPC横纵向控制器插件包
        ├── proto/                      // 控制器的配置定义文件夹
        ├── conf/                       // 控制器配置文件夹
        ├── BUILD                       // 构建规则文件
        ├── cyberfile.xml               // 包管理配置文件
        ├── mpc_controller.cc           // MPC控制器实现文件
        ├── mpc_controller.h            // MPC控制器实现文件
        ├── mpc_controller_test.cc      // MPC控制器单元测试文件
        ├── mpc_controller_test_data    // 控制器测试数据
        └── plugins.xml                 // 插件规则文件
1.5 模块输入输出与配置

输入:

Channel名称类型描述
/apollo/planningapollo::planning::ADCTrajectory车辆规划轨迹线信息
/apollo/localization/poseapollo::localization::LocalizationEstimate车辆定位信息
/apollo/canbus/chassisapollo::canbus::Chassis车辆底盘信息
-apollo::common::VehicleState车身姿态信息
/apollo/control/padapollo::control::ControlCommand::PadMessage自动驾驶使能(请求进入自动驾驶)指令

输出:

Channel名称类型描述
/apollo/controlapollo::control::ControlCommand车辆的控制指令,如方向盘、油门、刹车等信息

配置文件:

文件路径类型/结构说明
modules/control/control_component/conf/pipeline.pb.txtapollo::control::ControlPipelineControlComponent的配置文件
modules/control/control_component/conf/control.confcommand line flags命令行参数配置
modules/control/control_component/conf/calibration_table.pb.txtapollo::control::calibration_table车辆纵向标定表配置

Flags:

flagfile类型描述
modules/control/control_component/common/control_gflags.ccflagsControl组件flags变量定义文件
modules/control/control_component/common/control_gflags.hdeclareControl组件flags声明文件

2 控制器组件代码解析

control_component.h

#pragma once

#include <memory>
#include <string>

#include "modules/common_msgs/chassis_msgs/chassis.pb.h"
#include "modules/common_msgs/control_msgs/control_cmd.pb.h"
#include "modules/common_msgs/control_msgs/pad_msg.pb.h"
#include "modules/common_msgs/external_command_msgs/command_status.pb.h"
#include "modules/common_msgs/localization_msgs/localization.pb.h"
#include "modules/common_msgs/planning_msgs/planning.pb.h"
#include "modules/control/control_component/proto/preprocessor.pb.h"

#include "cyber/class_loader/class_loader.h"
#include "cyber/component/timer_component.h"
#include "cyber/time/time.h"
#include "modules/common/monitor_log/monitor_log_buffer.h"
#include "modules/common/util/util.h"
#include "modules/control/control_component/controller_task_base/common/dependency_injector.h"
#include "modules/control/control_component/controller_task_base/control_task_agent.h"
#include "modules/control/control_component/submodules/preprocessor_submodule.h"

/**
 * @namespace apollo::control
 * @brief apollo::control
 */
namespace apollo {
namespace control {

/**
 * @class Control
 *
 * @brief control module main class, it processes localization, chassis, and
 * pad data to compute throttle, brake and steer values.
 */
// 控制模块主类,处理定位、底盘、pad数据为了计算油门、刹车和转向,继承apollo::cyber::TimerComponent,定时触发
class ControlComponent final : public apollo::cyber::TimerComponent {
  friend class ControlTestBase;

 public:
  ControlComponent();
  bool Init() override;

  bool Proc() override;

 private:
  // Upon receiving pad message
  // 接收pad消息
  void OnPad(const std::shared_ptr<PadMessage> &pad);
  // 接收底盘消息
  void OnChassis(const std::shared_ptr<apollo::canbus::Chassis> &chassis);
  // 接受轨迹消息
  void OnPlanning(
      const std::shared_ptr<apollo::planning::ADCTrajectory> &trajectory);
  // 规划命令状态信息
  void OnPlanningCommandStatus(
      const std::shared_ptr<external_command::CommandStatus>
          &planning_command_status);
  // 接收定位消息
  void OnLocalization(
      const std::shared_ptr<apollo::localization::LocalizationEstimate>
          &localization);

  // Upon receiving monitor message
  // 接收检测信息
  void OnMonitor(
      const apollo::common::monitor::MonitorMessage &monitor_message);

  common::Status ProduceControlCommand(ControlCommand *control_command);
  common::Status CheckInput(LocalView *local_view);
  common::Status CheckTimestamp(const LocalView &local_view);
  common::Status CheckPad();
  void ResetAndProduceZeroControlCommand(ControlCommand *control_command);
  void GetVehiclePitchAngle(ControlCommand *control_command);

 private:
  apollo::cyber::Time init_time_;

  localization::LocalizationEstimate latest_localization_;
  canbus::Chassis latest_chassis_;
  planning::ADCTrajectory latest_trajectory_;
  external_command::CommandStatus planning_command_status_;
  PadMessage pad_msg_;
  common::Header latest_replan_trajectory_header_;

  ControlTaskAgent control_task_agent_;

  bool estop_ = false;
  std::string estop_reason_;
  bool pad_received_ = false;

  unsigned int status_lost_ = 0;
  unsigned int status_sanity_check_failed_ = 0;
  unsigned int total_status_lost_ = 0;
  unsigned int total_status_sanity_check_failed_ = 0;

  ControlPipeline control_pipeline_;

  std::mutex mutex_;
  // 订阅者 底盘、pad、定位、轨迹、命令状态
  std::shared_ptr<cyber::Reader<apollo::canbus::Chassis>> chassis_reader_;
  std::shared_ptr<cyber::Reader<PadMessage>> pad_msg_reader_;
  std::shared_ptr<cyber::Reader<apollo::localization::LocalizationEstimate>>
      localization_reader_;
  std::shared_ptr<cyber::Reader<apollo::planning::ADCTrajectory>>
      trajectory_reader_;
  std::shared_ptr<cyber::Reader<apollo::external_command::CommandStatus>>
      planning_command_status_reader_;
  // 发布者 控制命令、使用控制子模块LocalView
  std::shared_ptr<cyber::Writer<ControlCommand>> control_cmd_writer_;
  // when using control submodules
  std::shared_ptr<cyber::Writer<LocalView>> local_view_writer_;
  
  common::monitor::MonitorLogBuffer monitor_logger_buffer_;

  LocalView local_view_;

  std::shared_ptr<DependencyInjector> injector_;

  double previous_steering_command_ = 0.0;
};

CYBER_REGISTER_COMPONENT(ControlComponent)
}  // namespace control
}  // namespace apollo

control_component.cc

#include "modules/control/control_component/control_component.h"

#include "absl/strings/str_cat.h"

#include "cyber/common/file.h"
#include "cyber/common/log.h"
#include "cyber/time/clock.h"
#include "modules/common/adapters/adapter_gflags.h"
#include "modules/common/latency_recorder/latency_recorder.h"
#include "modules/common/vehicle_state/vehicle_state_provider.h"
#include "modules/control/control_component/common/control_gflags.h"

namespace apollo {
namespace control {

using apollo::canbus::Chassis;
using apollo::common::ErrorCode;
using apollo::common::Status;
using apollo::common::VehicleStateProvider;
using apollo::cyber::Clock;
using apollo::localization::LocalizationEstimate;
using apollo::planning::ADCTrajectory;

const double kDoubleEpsilon = 1e-6;

ControlComponent::ControlComponent()
    : monitor_logger_buffer_(common::monitor::MonitorMessageItem::CONTROL) {}

bool ControlComponent::Init() {
  injector_ = std::make_shared<DependencyInjector>();
  init_time_ = Clock::Now();

  AINFO << "Control init, starting ...";

  ACHECK(
      cyber::common::GetProtoFromFile(FLAGS_pipeline_file, &control_pipeline_))
      << "Unable to load control pipeline file: " + FLAGS_pipeline_file;

  AINFO << "ControlTask pipeline config file: " << FLAGS_pipeline_file
        << " is loaded.";

  // initial controller agent when not using control submodules
  ADEBUG << "FLAGS_use_control_submodules: " << FLAGS_use_control_submodules;
  if (!FLAGS_is_control_ut_test_mode) {
    if (!FLAGS_use_control_submodules &&
        !control_task_agent_.Init(injector_, control_pipeline_).ok()) {
      // set controller
      ADEBUG << "original control";
      monitor_logger_buffer_.ERROR(
          "Control init controller failed! Stopping...");
      return false;
    }
  }

  cyber::ReaderConfig chassis_reader_config;
  chassis_reader_config.channel_name = FLAGS_chassis_topic;
  chassis_reader_config.pending_queue_size = FLAGS_chassis_pending_queue_size;
  // 订阅底盘信息
  chassis_reader_ =
      node_->CreateReader<Chassis>(chassis_reader_config, nullptr);
  ACHECK(chassis_reader_ != nullptr);
  
  cyber::ReaderConfig planning_reader_config;
  planning_reader_config.channel_name = FLAGS_planning_trajectory_topic;
  planning_reader_config.pending_queue_size = FLAGS_planning_pending_queue_size;
  // 订阅轨迹信息
  trajectory_reader_ =
      node_->CreateReader<ADCTrajectory>(planning_reader_config, nullptr);
  ACHECK(trajectory_reader_ != nullptr);

  cyber::ReaderConfig planning_command_status_reader_config;
  planning_command_status_reader_config.channel_name =
      FLAGS_planning_command_status;
  planning_command_status_reader_config.pending_queue_size =
      FLAGS_planning_status_msg_pending_queue_size;
  // 订阅规划命令状态
  planning_command_status_reader_ =
      node_->CreateReader<external_command::CommandStatus>(
          planning_command_status_reader_config, nullptr);
  ACHECK(planning_command_status_reader_ != nullptr);

  cyber::ReaderConfig localization_reader_config;
  localization_reader_config.channel_name = FLAGS_localization_topic;
  localization_reader_config.pending_queue_size =
      FLAGS_localization_pending_queue_size;
  // 订阅定位信息
  localization_reader_ = node_->CreateReader<LocalizationEstimate>(
      localization_reader_config, nullptr);
  ACHECK(localization_reader_ != nullptr);

  cyber::ReaderConfig pad_msg_reader_config;
  pad_msg_reader_config.channel_name = FLAGS_pad_topic;
  pad_msg_reader_config.pending_queue_size = FLAGS_pad_msg_pending_queue_size;
  // 订阅pad消息
  pad_msg_reader_ =
      node_->CreateReader<PadMessage>(pad_msg_reader_config, nullptr);
  ACHECK(pad_msg_reader_ != nullptr);
  // 如果使用控制子模块,发布控制话题,否则,发布控制local_view
  if (!FLAGS_use_control_submodules) {
    control_cmd_writer_ =
        node_->CreateWriter<ControlCommand>(FLAGS_control_command_topic);
    ACHECK(control_cmd_writer_ != nullptr);
  } else {
    local_view_writer_ =
        node_->CreateWriter<LocalView>(FLAGS_control_local_view_topic);
    ACHECK(local_view_writer_ != nullptr);
  }

  // set initial vehicle state by cmd
  // need to sleep, because advertised channel is not ready immediately
  // simple test shows a short delay of 80 ms or so
  // 休眠1000ms
  AINFO << "Control resetting vehicle state, sleeping for 1000 ms ...";
  std::this_thread::sleep_for(std::chrono::milliseconds(1000));

  // should init_vehicle first, let car enter work status, then use status msg
  // trigger control
  // 首先初始化vehicle,让车到工作状态,然后使用状态消息
  AINFO << "Control default driving action is "
        << DrivingAction_Name((enum DrivingAction)FLAGS_action);
  pad_msg_.set_action((enum DrivingAction)FLAGS_action);

  return true;
}

void ControlComponent::OnPad(const std::shared_ptr<PadMessage> &pad) {
  // 创建锁,确保在访问 pad_msg_ 期间不会发生数据竞争
  std::lock_guard<std::mutex> lock(mutex_);
  // 将 pad 中的数据复制到 pad_msg_
  pad_msg_.CopyFrom(*pad);
  ADEBUG << "Received Pad Msg:" << pad_msg_.DebugString();
  AERROR_IF(!pad_msg_.has_action()) << "pad message check failed!";
}

void ControlComponent::OnChassis(const std::shared_ptr<Chassis> &chassis) {
  ADEBUG << "Received chassis data: run chassis callback.";
  // 创建锁,确保在访问 latest_chassis_ 期间不会发生数据竞争
  std::lock_guard<std::mutex> lock(mutex_);
  latest_chassis_.CopyFrom(*chassis);
}

void ControlComponent::OnPlanning(
    const std::shared_ptr<ADCTrajectory> &trajectory) {
  ADEBUG << "Received chassis data: run trajectory callback.";
  // 创建锁,确保在访问 latest_trajectory_ 期间不会发生数据竞争
  std::lock_guard<std::mutex> lock(mutex_);
  latest_trajectory_.CopyFrom(*trajectory);
}

void ControlComponent::OnPlanningCommandStatus(
    const std::shared_ptr<external_command::CommandStatus>
        &planning_command_status) {
  ADEBUG << "Received plannning command status data: run planning command "
            "status callback.";
  // 创建锁,确保在访问 planning_command_status_ 期间不会发生数据竞争
  std::lock_guard<std::mutex> lock(mutex_);
  planning_command_status_.CopyFrom(*planning_command_status);
}

void ControlComponent::OnLocalization(
    const std::shared_ptr<LocalizationEstimate> &localization) {
  ADEBUG << "Received control data: run localization message callback.";
  // 创建锁,确保在访问 latest_localization_ 期间不会发生数据竞争
  std::lock_guard<std::mutex> lock(mutex_);
  latest_localization_.CopyFrom(*localization);
}

void ControlComponent::OnMonitor(
    const common::monitor::MonitorMessage &monitor_message) {
  for (const auto &item : monitor_message.item()) {
    if (item.log_level() == common::monitor::MonitorMessageItem::FATAL) {
      // 检测到严重问题,需要立即停止
      estop_ = true;
      return;
    }
  }
}

Status ControlComponent::ProduceControlCommand(
    ControlCommand *control_command) {
  // 检查输入数据
  Status status = CheckInput(&local_view_);
  // check data
  if (!status.ok()) {
    AERROR_EVERY(100) << "Control input data failed: "
                      << status.error_message();
    control_command->mutable_engage_advice()->set_advice(
        apollo::common::EngageAdvice::DISALLOW_ENGAGE);
    control_command->mutable_engage_advice()->set_reason(
        status.error_message());
    estop_ = true;
    estop_reason_ = status.error_message();
  } else {
    estop_ = false;
    // 检查时间戳
    Status status_ts = CheckTimestamp(local_view_);
    if (!status_ts.ok()) {
      AERROR << "Input messages timeout";
      // Clear trajectory data to make control stop if no data received again
      // next cycle.
      // keep the history trajectory for control compute.
      // latest_trajectory_.Clear();
      estop_ = true;
      status = status_ts;
      if (local_view_.chassis().driving_mode() !=
          apollo::canbus::Chassis::COMPLETE_AUTO_DRIVE) {
        control_command->mutable_engage_advice()->set_advice(
            apollo::common::EngageAdvice::DISALLOW_ENGAGE);
        control_command->mutable_engage_advice()->set_reason(
            status.error_message());
      }
    } else {
      control_command->mutable_engage_advice()->set_advice(
          apollo::common::EngageAdvice::READY_TO_ENGAGE);
      estop_ = false;
    }
  }

  // 检查 estop
  estop_ = FLAGS_enable_persistent_estop
               ? estop_ || local_view_.trajectory().estop().is_estop()
               : local_view_.trajectory().estop().is_estop();
  // 如果规划中的 estop 标志为真,则设置 estop_ 为真
  if (local_view_.trajectory().estop().is_estop()) {
    estop_ = true;
    estop_reason_ = "estop from planning : ";
    estop_reason_ += local_view_.trajectory().estop().reason();
  }
  // 如果规划中的轨迹点为空,则设置 estop_ 为真
  if (local_view_.trajectory().trajectory_point().empty()) {
    AWARN_EVERY(100) << "planning has no trajectory point. ";
    estop_ = true;
    estop_reason_ = "estop for empty planning trajectory, planning headers: " +
                    local_view_.trajectory().header().ShortDebugString();
  }
  // 如果启用了 gear_drive 负速度保护功能,并且当前驾驶模式为 gear_drive,并且第一个轨迹点的速度小于 -kEpsilon,则设置 estop_ 为真
  if (FLAGS_enable_gear_drive_negative_speed_protection) {
    const double kEpsilon = 0.001;
    auto first_trajectory_point = local_view_.trajectory().trajectory_point(0);
    if (local_view_.chassis().gear_location() == Chassis::GEAR_DRIVE &&
        first_trajectory_point.v() < -1 * kEpsilon) {
      estop_ = true;
      estop_reason_ = "estop for negative speed when gear_drive";
    }
  }

  if (!estop_) {
    // 如果当前驾驶模式为完全手动驾驶,则重置控制器
    if (local_view_.chassis().driving_mode() == Chassis::COMPLETE_MANUAL) {
      control_task_agent_.Reset();
      AINFO_EVERY(100) << "Reset Controllers in Manual Mode";
    }
    // 设置控制命令的调试信息
    auto debug = control_command->mutable_debug()->mutable_input_debug();
    debug->mutable_localization_header()->CopyFrom(
        local_view_.localization().header());
    debug->mutable_canbus_header()->CopyFrom(local_view_.chassis().header());
    debug->mutable_trajectory_header()->CopyFrom(
        local_view_.trajectory().header());
    // 如果当前规划的轨迹点不为空,则将最新的重新规划轨迹头信息记录下来
    if (local_view_.trajectory().is_replan()) {
      latest_replan_trajectory_header_ = local_view_.trajectory().header();
    }
    // 如果最新的重新规划轨迹头具有序列号,则将其记录在控制命令的调试信息中
    if (latest_replan_trajectory_header_.has_sequence_num()) {
      debug->mutable_latest_replan_trajectory_header()->CopyFrom(
          latest_replan_trajectory_header_);
    }
  }
  // 如果当前规划的轨迹点不为空,则调用控制任务代理计算控制命令
  if (!local_view_.trajectory().trajectory_point().empty()) {
    // controller agent
    Status status_compute = control_task_agent_.ComputeControlCommand(
        &local_view_.localization(), &local_view_.chassis(),
        &local_view_.trajectory(), control_command);
    ADEBUG << "status_compute is " << status_compute;
    // 如果计算控制命令失败,记录错误信息并设置 estop_ 为 true
    if (!status_compute.ok()) {
      AERROR << "Control main function failed"
             << " with localization: "
             << local_view_.localization().ShortDebugString()
             << " with chassis: " << local_view_.chassis().ShortDebugString()
             << " with trajectory: "
             << local_view_.trajectory().ShortDebugString()
             << " with cmd: " << control_command->ShortDebugString()
             << " status:" << status_compute.error_message();
      estop_ = true;
      estop_reason_ = status_compute.error_message();
      status = status_compute;
    }
  }

  // if planning set estop, then no control process triggered
  // 如果规划停止,控制就触发不了
  if (estop_) {
    AWARN_EVERY(100) << "Estop triggered! No control core method executed!";
    // set Estop command
    control_command->set_speed(0);
    control_command->set_throttle(0);
    control_command->set_brake(FLAGS_soft_estop_brake);
    control_command->set_gear_location(Chassis::GEAR_DRIVE);
    previous_steering_command_ =
        injector_->previous_control_command_mutable()->steering_target();
    control_command->set_steering_target(previous_steering_command_);
  }
  // check signal
  if (local_view_.trajectory().decision().has_vehicle_signal()) {
    control_command->mutable_signal()->CopyFrom(
        local_view_.trajectory().decision().vehicle_signal());
  }
  return status;
}
// 核心函数Proc
bool ControlComponent::Proc() {
  const auto start_time = Clock::Now();

  chassis_reader_->Observe();
  const auto &chassis_msg = chassis_reader_->GetLatestObserved();
  // 接收不到底盘信息
  if (chassis_msg == nullptr) {
    AERROR << "Chassis msg is not ready!";
    injector_->set_control_process(false);
    return false;
  }
  OnChassis(chassis_msg);

  trajectory_reader_->Observe();
  const auto &trajectory_msg = trajectory_reader_->GetLatestObserved();
  // 接收不到轨迹信息
  if (trajectory_msg == nullptr) {
    AERROR << "planning msg is not ready!";
  } else {
    // Check if new planning data received.
    if (latest_trajectory_.header().sequence_num() !=
        trajectory_msg->header().sequence_num()) {
      OnPlanning(trajectory_msg);
    }
  }

  planning_command_status_reader_->Observe();
  const auto &planning_status_msg =
      planning_command_status_reader_->GetLatestObserved();
  if (planning_status_msg != nullptr) {
    OnPlanningCommandStatus(planning_status_msg);
    ADEBUG << "Planning command status msg is \n"
           << planning_command_status_.ShortDebugString();
  }
  injector_->set_planning_command_status(planning_command_status_);

  localization_reader_->Observe();
  const auto &localization_msg = localization_reader_->GetLatestObserved();
  // 接收不到定位消息
  if (localization_msg == nullptr) {
    AERROR << "localization msg is not ready!";
    injector_->set_control_process(false);
    return false;
  }
  OnLocalization(localization_msg);

  pad_msg_reader_->Observe();
  const auto &pad_msg = pad_msg_reader_->GetLatestObserved();
  if (pad_msg != nullptr) {
    OnPad(pad_msg);
  }

  {
    // TODO(SHU): to avoid redundent copy
    std::lock_guard<std::mutex> lock(mutex_);
    local_view_.mutable_chassis()->CopyFrom(latest_chassis_);
    local_view_.mutable_trajectory()->CopyFrom(latest_trajectory_);
    local_view_.mutable_localization()->CopyFrom(latest_localization_);
    if (pad_msg != nullptr) {
      local_view_.mutable_pad_msg()->CopyFrom(pad_msg_);
    }
  }

  // use control submodules
  if (FLAGS_use_control_submodules) {
    local_view_.mutable_header()->set_lidar_timestamp(
        local_view_.trajectory().header().lidar_timestamp());
    local_view_.mutable_header()->set_camera_timestamp(
        local_view_.trajectory().header().camera_timestamp());
    local_view_.mutable_header()->set_radar_timestamp(
        local_view_.trajectory().header().radar_timestamp());
    common::util::FillHeader(FLAGS_control_local_view_topic, &local_view_);

    const auto end_time = Clock::Now();

    // measure latency
    static apollo::common::LatencyRecorder latency_recorder(
        FLAGS_control_local_view_topic);
    latency_recorder.AppendLatencyRecord(
        local_view_.trajectory().header().lidar_timestamp(), start_time,
        end_time);

    local_view_writer_->Write(local_view_);
    return true;
  }

  if (pad_msg != nullptr) {
    ADEBUG << "pad_msg: " << pad_msg_.ShortDebugString();
    if (pad_msg_.action() == DrivingAction::RESET) {
      AINFO << "Control received RESET action!";
      estop_ = false;
      estop_reason_.clear();
    }
    pad_received_ = true;
  }

  if (FLAGS_is_control_test_mode && FLAGS_control_test_duration > 0 &&
      (start_time - init_time_).ToSecond() > FLAGS_control_test_duration) {
    AERROR << "Control finished testing. exit";
    injector_->set_control_process(false);
    return false;
  }

  injector_->set_control_process(true);

  ControlCommand control_command;

  Status status;
  // 自动驾驶模式
  if (local_view_.chassis().driving_mode() ==
      apollo::canbus::Chassis::COMPLETE_AUTO_DRIVE) {
    status = ProduceControlCommand(&control_command);
    ADEBUG << "Produce control command normal.";
  } else {
    ADEBUG << "Into reset control command.";
    ResetAndProduceZeroControlCommand(&control_command);
  }

  AERROR_IF(!status.ok()) << "Failed to produce control command:"
                          << status.error_message();

  if (pad_received_) {
    control_command.mutable_pad_msg()->CopyFrom(pad_msg_);
    pad_received_ = false;
  }

  // forward estop reason among following control frames.
  if (estop_) {
    control_command.mutable_header()->mutable_status()->set_msg(estop_reason_);
  }

  // set header
  control_command.mutable_header()->set_lidar_timestamp(
      local_view_.trajectory().header().lidar_timestamp());
  control_command.mutable_header()->set_camera_timestamp(
      local_view_.trajectory().header().camera_timestamp());
  control_command.mutable_header()->set_radar_timestamp(
      local_view_.trajectory().header().radar_timestamp());

  common::util::FillHeader(node_->Name(), &control_command);

  ADEBUG << control_command.ShortDebugString();
  if (FLAGS_is_control_test_mode) {
    ADEBUG << "Skip publish control command in test mode";
    return true;
  }

  if (fabs(control_command.debug().simple_lon_debug().vehicle_pitch()) <
      kDoubleEpsilon) {
    injector_->vehicle_state()->Update(local_view_.localization(),
                                       local_view_.chassis());
    GetVehiclePitchAngle(&control_command);
  }

  const auto end_time = Clock::Now();
  const double time_diff_ms = (end_time - start_time).ToSecond() * 1e3;
  ADEBUG << "total control time spend: " << time_diff_ms << " ms.";

  control_command.mutable_latency_stats()->set_total_time_ms(time_diff_ms);
  control_command.mutable_latency_stats()->set_total_time_exceeded(
      time_diff_ms > FLAGS_control_period * 1e3);
  ADEBUG << "control cycle time is: " << time_diff_ms << " ms.";
  status.Save(control_command.mutable_header()->mutable_status());

  // measure latency
  if (local_view_.trajectory().header().has_lidar_timestamp()) {
    static apollo::common::LatencyRecorder latency_recorder(
        FLAGS_control_command_topic);
    latency_recorder.AppendLatencyRecord(
        local_view_.trajectory().header().lidar_timestamp(), start_time,
        end_time);
  }

  // save current control command 保存当前控制命令
  injector_->Set_pervious_control_command(&control_command);
  injector_->previous_control_command_mutable()->CopyFrom(control_command);
  injector_->previous_control_debug_mutable()->CopyFrom(
      injector_->control_debug_info());
  // 发布控制命令
  control_cmd_writer_->Write(control_command);
  return true;
}
// 检查输入
Status ControlComponent::CheckInput(LocalView *local_view) {
  ADEBUG << "Received localization:"
         << local_view->localization().ShortDebugString();
  ADEBUG << "Received chassis:" << local_view->chassis().ShortDebugString();

  if (!local_view->trajectory().estop().is_estop() &&
      local_view->trajectory().trajectory_point().empty()) {
    AWARN_EVERY(100) << "planning has no trajectory point. ";
    const std::string msg =
        absl::StrCat("planning has no trajectory point. planning_seq_num:",
                     local_view->trajectory().header().sequence_num());
    return Status(ErrorCode::CONTROL_COMPUTE_ERROR, msg);
  }

  for (auto &trajectory_point :
       *local_view->mutable_trajectory()->mutable_trajectory_point()) {
    if (std::abs(trajectory_point.v()) < FLAGS_minimum_speed_resolution &&
        std::abs(trajectory_point.a()) < FLAGS_max_acceleration_when_stopped) {
      trajectory_point.set_v(0.0);
      trajectory_point.set_a(0.0);
    }
  }

  injector_->vehicle_state()->Update(local_view->localization(),
                                     local_view->chassis());

  return Status::OK();
}
// 检查时间戳
Status ControlComponent::CheckTimestamp(const LocalView &local_view) {
  if (!FLAGS_enable_input_timestamp_check || FLAGS_is_control_test_mode) {
    ADEBUG << "Skip input timestamp check by gflags.";
    return Status::OK();
  }
  double current_timestamp = Clock::NowInSeconds();
  double localization_diff =
      current_timestamp - local_view.localization().header().timestamp_sec();
  if (localization_diff >
      (FLAGS_max_localization_miss_num * FLAGS_localization_period)) {
    AERROR << "Localization msg lost for " << std::setprecision(6)
           << localization_diff << "s";
    monitor_logger_buffer_.ERROR("Localization msg lost");
    return Status(ErrorCode::CONTROL_COMPUTE_ERROR, "Localization msg timeout");
  }

  double chassis_diff =
      current_timestamp - local_view.chassis().header().timestamp_sec();
  if (chassis_diff > (FLAGS_max_chassis_miss_num * FLAGS_chassis_period)) {
    AERROR << "Chassis msg lost for " << std::setprecision(6) << chassis_diff
           << "s";
    monitor_logger_buffer_.ERROR("Chassis msg lost");
    return Status(ErrorCode::CONTROL_COMPUTE_ERROR, "Chassis msg timeout");
  }

  double trajectory_diff =
      current_timestamp - local_view.trajectory().header().timestamp_sec();
  if (trajectory_diff >
      (FLAGS_max_planning_miss_num * FLAGS_trajectory_period)) {
    AERROR << "Trajectory msg lost for " << std::setprecision(6)
           << trajectory_diff << "s";
    monitor_logger_buffer_.ERROR("Trajectory msg lost");
    return Status(ErrorCode::CONTROL_COMPUTE_ERROR, "Trajectory msg timeout");
  }
  return Status::OK();
}
// 重置控制命令
void ControlComponent::ResetAndProduceZeroControlCommand(
    ControlCommand *control_command) {
  control_command->set_throttle(0.0);
  control_command->set_steering_target(0.0);
  control_command->set_steering_rate(0.0);
  control_command->set_speed(0.0);
  control_command->set_brake(0.0);
  control_command->set_gear_location(Chassis::GEAR_DRIVE);
  control_task_agent_.Reset();
  latest_trajectory_.mutable_trajectory_point()->Clear();
  latest_trajectory_.mutable_path_point()->Clear();
  trajectory_reader_->ClearData();
}
// 获得汽车的俯仰角
void ControlComponent::GetVehiclePitchAngle(ControlCommand *control_command) {
  double vehicle_pitch = injector_->vehicle_state()->pitch() * 180 / M_PI;
  control_command->mutable_debug()
      ->mutable_simple_lon_debug()
      ->set_vehicle_pitch(vehicle_pitch + FLAGS_pitch_offset_deg);
}

}  // namespace control
}  // namespace apollo

控制全局变量配置文件见control_gflags.cc

配置加载的控制器,Apollo中modules/control/control_component/conf/pipeline.pb.txt

controller {
  name: "LAT_CONTROLLER"
  type: "LatController"
}
controller {
  name: "LON_CONTROLLER"
  type: "LonController"
}

name是用户自定义,表达清楚是什么控制器就行,type是控制器的子类名称,如果和子类名称不一致,会导致加载控制器失败。上面是先加载横向控制器,再加载纵向控制器

3 Control组件包逻辑梳理

主要是梳理Init函数和Proc函数
Init函数
主要实现ControlTaskAgent的初始化,以及control上游的相关消息的订阅

摘取Init函数里面的主要部分

bool ControlComponent::Init() {
  // 初始化控制器agent
  if (!FLAGS_is_control_ut_test_mode) {
    if (!FLAGS_use_control_submodules &&
        !control_task_agent_.Init(injector_, control_pipeline_).ok()) {
      // set controller
      ADEBUG << "original control";
      monitor_logger_buffer_.ERROR(
          "Control init controller failed! Stopping...");
      return false;
    }
  }
  // 订阅底盘信息
  chassis_reader_ =
      node_->CreateReader<Chassis>(chassis_reader_config, nullptr);
  // 订阅轨迹信息
  trajectory_reader_ =
      node_->CreateReader<ADCTrajectory>(planning_reader_config, nullptr);
  // 订阅规划命令状态
  planning_command_status_reader_ =
      node_->CreateReader<external_command::CommandStatus>(
          planning_command_status_reader_config, nullptr);
  // 订阅定位信息
  localization_reader_ = node_->CreateReader<LocalizationEstimate>(
      localization_reader_config, nullptr);
  // 订阅pad消息
  pad_msg_reader_ =
      node_->CreateReader<PadMessage>(pad_msg_reader_config, nullptr);
}

Proc函数
(1) 获取订阅消息的当前最新数据
(2) 检查订阅消息输入数据
(3) 检查订阅消息输入数据时间戳是否在容差范围内
(4) 更新车身姿态信息
(5) 进行control控制计算(调用ControlTaskAgent的ComputeControlCommand方法)
(6) 输出底盘控制指令

摘取Proc函数里面的主要部分

bool ControlComponent::Proc() {
    // 获取订阅消息的当前最新数据
	const auto &chassis_msg = chassis_reader_->GetLatestObserved();
	const auto &trajectory_msg = trajectory_reader_->GetLatestObserved();
	const auto &planning_status_msg =
      planning_command_status_reader_->GetLatestObserved();
    const auto &localization_msg = localization_reader_->GetLatestObserved();
    const auto &pad_msg = pad_msg_reader_->GetLatestObserved();
    // 检查订阅消息输入数据
    // 检查订阅消息输入数据时间戳是否在容差范围内
    // 自动驾驶模式
    if (local_view_.chassis().driving_mode() ==
        apollo::canbus::Chassis::COMPLETE_AUTO_DRIVE) {
    // 计算控制命令
      status = ProduceControlCommand(&control_command);
      ADEBUG << "Produce control command normal.";
    } else {
      ADEBUG << "Into reset control command.";
      ResetAndProduceZeroControlCommand(&control_command);
    }
    // 更新车身姿态信息
    injector_->vehicle_state()->Update(local_view_.localization(),
                                       local_view_.chassis());
    // 发布控制命令
    control_cmd_writer_->Write(control_command);
}

3 controller_task_base

之前的控制组件包讲解告一段落,如有疑惑可在评论区留言讨论

controller_task_base主要包含ControlTaskAgentControlTask定义,ControlTaskAgent用来管理ControlTask插件的加载和执行顺序,ControlTaskcontroller控制器插件的父类,Control/controller控制器插件都继承于ControlTask

control_task_agent.h

#pragma once

#include <memory>
#include <vector>

#include "modules/common_msgs/control_msgs/control_cmd.pb.h"
#include "modules/common_msgs/planning_msgs/planning.pb.h"
#include "modules/control/control_component/proto/pipeline.pb.h"

#include "cyber/plugin_manager/plugin_manager.h"
#include "modules/common/util/factory.h"
#include "modules/control/control_component/controller_task_base/common/dependency_injector.h"
#include "modules/control/control_component/controller_task_base/control_task.h"

/**
 * @namespace apollo::control
 * @brief apollo::control
 */
namespace apollo {
namespace control {

/**
 * @class ControlTaskAgent
 *
 * @brief manage all controllers declared in control config file.
 */
class ControlTaskAgent {
 public:
  /**
   * @brief 初始化 ControlTaskAgent
   * @param control_conf control configurations
   * @return Status initialization status
   */
  common::Status Init(std::shared_ptr<DependencyInjector> injector,
                      const ControlPipeline &control_pipeline);

  /**
   * @brief compute control command based on current vehicle status
   *        and target trajectory
   * @param localization vehicle location
   * @param chassis vehicle status e.g., speed, acceleration
   * @param trajectory trajectory generated by planning
   * @param cmd control command
   * @return Status computation status
   */
  // 基于当前车辆状态和目标轨迹计算控制命令
  common::Status ComputeControlCommand(
      const localization::LocalizationEstimate *localization,
      const canbus::Chassis *chassis, const planning::ADCTrajectory *trajectory,
      control::ControlCommand *cmd);

  /**
   * @brief reset ControlTaskAgent
   * @return Status reset status
   */
  // 重置ControlTaskAgent
  common::Status Reset();

 private:
  std::vector<std::shared_ptr<ControlTask>> controller_list_;
  std::shared_ptr<DependencyInjector> injector_ = nullptr;
};

}  // namespace control
}  // namespace apollo

control_task_agent.cc

#include "modules/control/control_component/controller_task_base/control_task_agent.h"

#include <utility>

#include "cyber/common/log.h"
#include "cyber/time/clock.h"
#include "modules/control/control_component/common/control_gflags.h"

namespace apollo {
namespace control {

using apollo::common::ErrorCode;
using apollo::common::Status;
using apollo::cyber::Clock;
using apollo::cyber::plugin_manager::PluginManager;
// 初始化控制器
Status ControlTaskAgent::Init(std::shared_ptr<DependencyInjector> injector,
                              const ControlPipeline &control_pipeline) {
  if (control_pipeline.controller_size() == 0) {
    AERROR << "control_pipeline is empty";
    return Status(ErrorCode::CONTROL_INIT_ERROR, "Empty control_pipeline");
  }

  injector_ = injector;
  for (int i = 0; i < control_pipeline.controller_size(); i++) {
    auto controller = PluginManager::Instance()->CreateInstance<ControlTask>(
        "apollo::control::" + control_pipeline.controller(i).type());
    if (!controller->Init(injector_).ok()) {
      AERROR << "Can not init controller " << controller->Name();
      return Status(
          ErrorCode::CONTROL_INIT_ERROR,
          "Failed to init Controller:" + control_pipeline.controller(i).name());
    }
    controller_list_.push_back(controller);
    AINFO << "Controller <" << controller->Name() << "> init done!";
  }
  return Status::OK();
}
// 计算控制命令
Status ControlTaskAgent::ComputeControlCommand(
    const localization::LocalizationEstimate *localization,
    const canbus::Chassis *chassis, const planning::ADCTrajectory *trajectory,
    control::ControlCommand *cmd) {
  for (auto &controller : controller_list_) {
    ADEBUG << "controller:" << controller->Name() << " processing ...";
    double start_timestamp = Clock::NowInSeconds();
    // 计算控制命令 (核心)
    controller->ComputeControlCommand(localization, chassis, trajectory, cmd);
    double end_timestamp = Clock::NowInSeconds();
    const double time_diff_ms = (end_timestamp - start_timestamp) * 1000;

    ADEBUG << "controller: " << controller->Name()
           << " calculation time is: " << time_diff_ms << " ms.";
    cmd->mutable_latency_stats()->add_controller_time_ms(time_diff_ms);
  }
  return Status::OK();
}

Status ControlTaskAgent::Reset() {
  for (auto &controller : controller_list_) {
    ADEBUG << "controller:" << controller->Name() << " reset...";
    controller->Reset();
  }
  return Status::OK();
}

}  // namespace control
}  // namespace apollo

ControlTask是controller控制器插件的父类,Control/controller控制器插件都继承于ControlTask

control_task.h

/**
 * @file
 * @brief Defines the Controller base class.
 */

#pragma once

#include <memory>
#include <string>

#include <cxxabi.h>

#include "modules/common_msgs/control_msgs/control_cmd.pb.h"
#include "modules/common_msgs/localization_msgs/localization.pb.h"
#include "modules/common_msgs/planning_msgs/planning.pb.h"
#include "modules/control/control_component/proto/calibration_table.pb.h"

#include "cyber/common/file.h"
#include "cyber/plugin_manager/plugin_manager.h"
#include "modules/common/status/status.h"
#include "modules/control/control_component/common/control_gflags.h"
#include "modules/control/control_component/controller_task_base/common/dependency_injector.h"

namespace apollo {
namespace control {

class ControlTask {
 public:
  ControlTask() = default;
  virtual ~ControlTask() = default;

  /**
   * @brief initialize Controller
   * @param control_conf control configurations
   * @return Status initialization status
   */
  virtual common::Status Init(std::shared_ptr<DependencyInjector> injector) = 0;

  /**
   * @brief compute control command based on current vehicle status
   *        and target trajectory
   * @param localization vehicle location
   * @param chassis vehicle status e.g., speed, acceleration
   * @param trajectory trajectory generated by planning
   * @param cmd control command
   * @return Status computation status
   */
  virtual common::Status ComputeControlCommand(
      const localization::LocalizationEstimate *localization,
      const canbus::Chassis *chassis, const planning::ADCTrajectory *trajectory,
      control::ControlCommand *cmd) = 0;

  /**
   * @brief reset Controller
   * @return Status reset status
   */
  virtual common::Status Reset() = 0;

  /**
   * @brief controller name
   * @return string controller name in string
   */
  virtual std::string Name() const = 0;

  /**
   * @brief stop controller
   */
  virtual void Stop() = 0;

 protected:
  template <typename T>
  bool LoadConfig(T *config);
  // 加载油门制动标定表
  bool LoadCalibrationTable(calibration_table *calibration_table_conf) {
    std::string calibration_table_path = FLAGS_calibration_table_file;

    if (!apollo::cyber::common::GetProtoFromFile(calibration_table_path,
                                                 calibration_table_conf)) {
      AERROR << "Load calibration table failed!";
      return false;
    }
    AINFO << "Load the calibraiton table file successfully, file path: "
          << calibration_table_path;
    return true;
  }
};

template <typename T>
bool ControlTask::LoadConfig(T *config) {
  int status;
  std::string class_name =
      abi::__cxa_demangle(typeid(*this).name(), 0, 0, &status);
  // Generate the default task config path from PluginManager.
  std::string config_path_ =
      apollo::cyber::plugin_manager::PluginManager::Instance()
          ->GetPluginConfPath<ControlTask>(class_name,
                                           "conf/controller_conf.pb.txt");

  if (!apollo::cyber::common::GetProtoFromFile(config_path_, config)) {
    AERROR << "Load config of " << class_name << " failed!";
    return false;
  }
  AINFO << "Load the [" << class_name
        << "] config file successfully, file path: " << config_path_;
  return true;
}

}  // namespace control
}  // namespace apollo

4 controller

接下来看一下具体控制器的实现
在这里插入图片描述


具体控制器讲解见下一章节

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1826575.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

程序员基本功之git的使用

阿里网盘-资料链接 文章目录 git分布式版本控制工具git的基本概念开发过程中的问题常见的版本控制工具git分布式版本控制工具特点git系统所定制的若干目标git的工作流程图 GIT的安装和常用命令**创建本地git仓库步骤****本地git仓库的使用**git log详解 git分布式版本控制工具…

大模型系列:Prompt提示工程常用技巧和实践

前言 Prompt提示语是使用大模型解决实际问题的最直接的方式&#xff0c;本篇介绍Prompt提示工程常用的技巧&#xff0c;包括Zero-Shot、Few-Shot、CoT思维链、Least-to-Most任务分解。 内容摘要 Prompt提示工程简述Prompt的一般结构介绍零样本提示Zero-Shot少样本提示Few-Sho…

Ubuntu 18.04下普通用户的一次提权过程

Ubuntu 18.04下普通用户的一次提权过程 一.背景介绍:二.主要调试过程:三.相关命令:1.设置BMC密码,获取BMC IP2.找一台ubuntu搭建TFTP服务,用来替换grub.cfg文件3.从调试服务器的/boot/grub/grub.cfg中提取出recovery mode的配置,简化并生成新的配置文件grub.cfg,放在tftp服务的…

从零开始学习RecyclerView

1、实现最简单的一个控件列表 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:tools"http://schemas.android.com/tools"android:layout_width&qu…

Maven常用命令介绍(Ⅰ)

基本命令 Maven生命周期 Maven的生命周期是对所有的构建过程进行抽象和统一。Maven的生命周期是抽象的&#xff0c;这意味着生命周期本身不做任何实际的工作&#xff0c;生命周期只是定义了一系列的阶段&#xff0c;并确定这些阶段的执行顺序。而在执行这些阶段时&#xff0c;…

08 SpringBoot 自定定义配置

SpringBoot自定义配置有三种方式&#xff1a; 使用PropertySource进行自定义配置 使用ImportResource进行自定义配置 使用Configuration进行自定义配置 PropertySource ​ 如果将所有的配置都集中到 application.properties 或 application.yml 中&#xff0c;那么这个配置文…

秋招突击——第四弹——Java的SSN框架快速入门——Maven

文章目录 引言Maven分模块开发与设计分模块开发的过程 依赖管理可选依赖与排除依赖 继承与聚合聚合继承 属性和版本管理属性扩大集中管理的范围版本管理 多环境开发多环境开发 私服简介安装私服资源操作流程分析上传和下载 总结 引言 前一个部分花了太多时间&#xff0c;后续得…

音视频集式流媒体边缘分布式集群拉流管理

一直以来&#xff0c;由于srs zlm等开源软件采用传统直播协议&#xff0c;即使后面实现了webrtc转发&#xff0c;由于信令交互较弱&#xff0c;使得传统的安防监控方案需要在公网云平台上部署大型流媒体服务器&#xff0c;而且节点资源不能统一管理调度&#xff0c;缺乏灵活性和…

链表经典题目:环形链表问题(LeetCode141.环形链表、LeetCode142.环形链表Ⅱ)

&#x1f4c7;文章目录 &#x1f4dc; LeetCode141. 环形链表&#x1f536;题目描述&#x1f537;思路分析✔️代码实现 &#x1f4dc; LeetCode142.环形链表Ⅱ&#x1f536;题目描述&#x1f537;思路①✔️代码实现&#x1f537;思路② &#x1f4d2;总结 &#x1f4dc; Leet…

父亲节马上到了-和我一起用Python写父亲节的祝福吧

前言 让我们一起用Python写一段父亲节的祝福吧 &#x1f4dd;个人主页→数据挖掘博主ZTLJQ的主页 个人推荐python学习系列&#xff1a; ☄️爬虫JS逆向系列专栏 - 爬虫逆向教学 ☄️python系列专栏 - 从零开始学python 话不多说先上代码 import tkinter as tk from doctest imp…

【GD32F303红枫派使用手册】第十六节 USART-DMA串口收发实验

16.1 实验内容 通过本实验主要学习以下内容&#xff1a; 串口DMA工作原理 使用DMA进行串口收发 16.2 实验原理 16.2.1 串口DMA工作原理 在前面ADC章节中&#xff0c;我们介绍了DMA的工作原理&#xff0c;这里就不多做介绍。从GD32F303用户手册中可以查到&#xff0c;各串…

CrossOver 2024软件安装包下载

CrossOver不像Parallels或VMware的模拟器&#xff0c;而是实实在在Mac OS X系统上运行的一个软件。CrossOvers能够直接在Mac上运行Windows软件与游戏&#xff0c;而不需虚拟机。它为Windows软件提供所需的资源&#xff0c;以达到在Mac OS X系统上运行Windows程序的目的。 安 装…

Android屏幕旋转流程(1)

&#xff08;1&#xff09;Gsensor的注册和监听 App -->I2C过程&#xff1a;App通过SensorManager.getSystemServer调用到SystemSensorManager&#xff0c;SystemSensorManager通过jni调用到SensorManager.cpp&#xff0c;后通过binder调用到SensorService。SensorService通…

使用Python和TCN进行时间序列预测:一个完整的实战示例

使用Python和TCN进行时间序列预测&#xff1a;一个完整的实战示例 时间卷积网络&#xff08;TCN&#xff09;已被证明在处理序列数据方面表现出色&#xff0c;尤其是在需要捕获长期依赖关系的任务中。在本文中&#xff0c;我们将通过一个简单的例子&#xff0c;展示如何使用Py…

洗地机哪款好?洗地机十大名牌排行榜

随着科技的发展&#xff0c;各种家居清洁工具层出不穷&#xff0c;为我们的生活带来了诸多便利。在众多清洁工具中&#xff0c;洗地机的清洁效果更受大家喜爱&#xff0c;它能够完美解决了扫地机无法做到的干湿垃圾“一遍清洁”效果&#xff0c;而且几乎能解决日常生活中所有的…

【Pandas驯化-02】pd.read_csv读取中文出现error解决方法

【Pandas】驯化-02pd.read_csv读取中文出现error解决方法 本次修炼方法请往下查看 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合&#xff0c;智慧小天地&#xff01; &#x1f387; 相关内容文档获取 微信公众号 &…

微型操作系统内核源码详解系列五(1):arm cortex m3架构

系列一&#xff1a;微型操作系统内核源码详解系列一&#xff1a;rtos内核源码概论篇&#xff08;以freertos为例&#xff09;-CSDN博客 系列二&#xff1a;微型操作系统内核源码详解系列二&#xff1a;数据结构和对象篇&#xff08;以freertos为例&#xff09;-CSDN博客 系列…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 连续区间和(100分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 📎在线评测链接 连续区间和(100分) 🌍 评测功能需要订阅专栏后私信联系清隆…

python如何对list求和

如何在Python中对多个list的对应元素求和&#xff0c;前提是每个list的长度一样。比如&#xff1a;a[1&#xff0c;2&#xff0c;3]&#xff0c;b[2&#xff0c;3&#xff0c;4]&#xff0c;c[3&#xff0c;4&#xff0c;5]&#xff0c;对a&#xff0c;b&#xff0c;c的对应元素…

RN6752V1 高性能AHD转MIPIDVPBT656BT601芯片方案,目前适用于车载方案居多

RN6752V1描述&#xff1a; RN6752V1是一种模拟高清晰度&#xff08;模拟高清&#xff09;视频解码器IC&#xff0c;专为汽车应用而设计。它集成了所有必要的功能块&#xff1a; AFE&#xff0c;PLL&#xff0c;解码逻辑&#xff0c;MIPI和I2C接口等&#xff0c;在一个小的5mm …