文章目录
- 优惠卷秒杀
- 1.redis实现分布式ID
- 2.优惠券秒杀下单
- 3.超卖问题
- 4.lua脚本
- 5.分布式锁
- 6.redis stream消息队列实现异步秒杀
- 7.redis消息队列
- list实现消息队列
- PubSub实现消息队列
- stream实现消息队列
- stream的消息队列-消费者组
学习黑马点评
项目整理总结:https://www.bilibili.com/video/BV1cr4y1671t/?vd_source=5f3396d3af2c3945929d54c786f289e5
官方命令文档:https://redis.io/commands/
优惠卷秒杀
1.redis实现分布式ID
在分布式系统下,普遍要进行分库分表,他们从逻辑上讲他们是同一张表,所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性。
全局ID生成器,是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足下列特性:
- 唯一性
- 高可用
- 高性能
- 递增性
- 安全性
为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:
ID的组成部分:符号位:1bit,永远为0
时间戳:31bit,以秒为单位,可以使用69年
序列号:32bit,秒内的计数器,支持每秒产生2^32个不同ID
实现
@Component
public class RedisIdWorker {
/**
* 开始时间戳
*/
private static final long BEGIN_TIMESTAMP = 1640995200L;
/**
* 序列号的位数
*/
private static final int COUNT_BITS = 32;
@Autowired
private StringRedisTemplate redisTemplate;
public long nextId(String keyPrefix) {
// 1.生成时间戳
LocalDateTime now = LocalDateTime.now();
long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
// 时间戳=当前时间毫秒-开始时间毫秒
long timestamp = nowSecond - BEGIN_TIMESTAMP;
// 2.生成序列号
// 2.1.获取当前日期,精确到天
String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
Long count = redisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);
// 3.拼接并返回
// timestamp:33919388
// count:53293
// 结果:145682662160388141(十进制)
return timestamp << COUNT_BITS | count;
}
public static void main(String[] args) {
Calendar now = Calendar.getInstance();
LocalDateTime time = LocalDateTime.of(2022, 1, 1, 0, 0, 0);
long timeInMillis = time.toEpochSecond(ZoneOffset.UTC);
System.out.println(timeInMillis);
RedisIdWorker redisIdWorker = new RedisIdWorker();
long order = redisIdWorker.nextId("order");
}
}
timestamp << COUNT_BITS | count;
// timestamp:33919388
// count:53293
// 结果:145682662160388141(十进制)->001000000101100100011001110000000000000000001101000000101101(二进制)
时间戳向左移动32位,低位以0补位,再与count做或运算,就组成了一个id
测试
@Autowired
private RedisIdWorker redisIdWorker;
private ExecutorService es = Executors.newFixedThreadPool(500);
@Test
void testIdWorker() throws InterruptedException {
CountDownLatch latch = new CountDownLatch(300);
Runnable task = () -> {
for (int i = 0; i < 100; i++) {
long id = redisIdWorker.nextId("order");
System.out.println("id = " + id);
}
latch.countDown();
};
long begin = System.currentTimeMillis();
for (int i = 0; i < 300; i++) {
es.submit(task);
}
latch.await();
long end = System.currentTimeMillis();
System.out.println("time = " + (end - begin));
}
2.优惠券秒杀下单
总共分3步:
1.校验秒杀是否开始或结束,以及库存是否充足
2.扣减库存
3.生成优惠券订单
伪代码:
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
// 2.判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
return Result.fail("秒杀尚未开始!");
}
// 3.判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
return Result.fail("秒杀已经结束!");
}
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
return Result.fail("库存不足!");
}
//5,扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
//6.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 6.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 6.2.用户id
Long userId = UserHolder.getUser().getId();
voucherOrder.setUserId(userId);
// 6.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
return Result.ok(orderId);
}
3.超卖问题
分析:假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,此时就会出现库存的超卖问题。
超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案就是加锁:而对于加锁,我们通常有两种解决方案:
悲观锁:认为线程安全问题一定会发生,因此在操作数据之前先获取锁,确保线程串行执行。例如Synchronized、Lock都属于悲观锁
乐观锁:认为线程安全问题不一定会发生,因此不加锁,只是在更新数据时去判断有没有其它线程对数据做了修改。如果没有修改则认为是安全的,自己才更新数据。 如果已经被其它线程修改说明发生了安全问题,此时可以重试或异常。
乐观锁主要有两种:
- 版本号
- CAS
1.版本号法
线程1先查出库存和版本号,这时线程2也来了,查询出相同的库存和版本号,线程1执行扣减操作成功,并且库存的版本号加一,表示被修改过了,线程二再进行扣减用的version=1,数据库中已经不存在版本号为1的数据,扣减失败
2.CAS法
线程1先查出库存,这时线程2也来了,查询出相同的库存,线程1执行扣减操作成功,线程二再进行扣减用的stock=1,数据库中已经不存在库存为1的数据,扣减失败
总结:
悲观锁:添加同步锁,让线程串行执行
- 优点:简单粗暴
- 缺点:性能一般
乐观锁:不加锁,在更新时判断是否有其它线程在修改 - 优点:性能好
- 缺点:存在成功率低的问题
乐观锁比较适合更新数据,悲观锁比较适合增删数据
4.lua脚本
Redis提供了Lua脚本功能,在一个脚本中编写多条Redis命令,确保多条命令执行时的原子性。Lua是一种编程语言,它的基本语法大家可以参考网站:https://www.runoob.com/lua/lua-tutorial.html,这里重点介绍Redis提供的调用函数,我们可以使用lua去操作redis,又能保证他的原子性,这样就可以实现拿锁比锁删锁是一个原子性动作了,作为Java程序员这一块并不作一个简单要求,并不需要大家过于精通,只需要知道他有什么作用即可。
这里重点介绍Redis提供的调用函数,语法如下:
redis.call('命令名称', 'key', '其它参数', ...)
例如,我们要执行set name jack,则脚本是这样:
# 执行 set name jack
redis.call('set', 'name', 'jack')
例如,我们要先执行set name Rose,再执行get name,则脚本如下:
# 先执行 set name jack
redis.call('set', 'name', 'Rose')
# 再执行 get name
local name = redis.call('get', 'name')
# 返回
return name
写好脚本以后,需要用Redis命令来调用脚本,调用脚本的常见命令如下:
例如,我们要执行 redis.call(‘set’, ‘name’, ‘jack’) 这个脚本,语法如下:
如果脚本中的key、value不想写死,可以作为参数传递。key类型参数会放入KEYS数组,其它参数会放入ARGV数组,在脚本中可以从KEYS和ARGV数组获取这些参数:
5.分布式锁
项目在集群环境下使用syn加锁依然会有线程安全问题,每个项目就是一个tomcat,也就是部署了多个tomcat,每个tomcat都有一个属于自己的jvm,那么假设在服务器A的tomcat内部,有两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果现在是服务器B的tomcat内部,又有两个线程,但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2实现互斥,这就是 集群环境下,syn锁失效的原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。
分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路
常见分布式锁实现:
手动实现redis分布式锁,功能如下:
1.加锁
2.释放锁
3.过期时间兜底(防死锁)
4.防误删(释放锁先判断是否是自己的锁)
5.lua脚本保证原子性
代码如下
public class SimpleRedisLock {
private String name;
private StringRedisTemplate stringRedisTemplate;
public SimpleRedisLock(String name, StringRedisTemplate stringRedisTemplate) {
this.name = name;
this.stringRedisTemplate = stringRedisTemplate;
}
private static final String KEY_PREFIX = "lock:";
private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";
private static final DefaultRedisScript<Long> UNLOCK_SCRIPT;
static {
UNLOCK_SCRIPT = new DefaultRedisScript<>();
UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));
UNLOCK_SCRIPT.setResultType(Long.class);
}
public boolean tryLock(long timeoutSec) {
// 获取线程标示
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 获取锁
Boolean success = stringRedisTemplate.opsForValue()
.setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);
return Boolean.TRUE.equals(success);
}
public void unlock() {
// 调用lua脚本
stringRedisTemplate.execute(
UNLOCK_SCRIPT,
Collections.singletonList(KEY_PREFIX + name),
ID_PREFIX + Thread.currentThread().getId());
}
}
释放锁脚本unlock.lua
-- 比较线程标示与锁中的标示是否一致
if(redis.call('get', KEYS[1]) == ARGV[1]) then
-- 释放锁 del key
return redis.call('del', KEYS[1])
end
return 0
自己实现的基于Redis的分布式锁实现思路:
- 利用set nx ex获取锁,并设置过期时间,保存线程标示
- 释放锁时先判断线程标示是否与自己一致,一致则删除锁
- 特性:
- 利用set nx满足互斥性
- 利用set ex保证故障时锁依然能释放,避免死锁,提高安全性
- 利用Redis集群保证高可用和高并发特性
- 特性:
但还有锁续期功能没有实现,自己实现起来很复杂,推荐使用redission
6.redis stream消息队列实现异步秒杀
现在的秒杀流程是同步的:
1、查询优惠卷
2、判断秒杀库存是否足够
3、查询订单
4、校验是否是一人一单
5、扣减库存
6、创建订单
在这六步操作中,又有很多操作是要去操作数据库的,而且还是一个线程串行执行, 这样就会导致我们的程序执行的很慢,所以我们需要异步程序执行。
修改需求:
- 1.新增秒杀优惠券的同时,将优惠券信息保存到Redis中
- 2.基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功
- 3.如果抢购成功,将优惠券id和用户id封装后存入stream消息队列
- 4.不断从消息队列中获取信息,实现异步下单功能
现将前4步使用lua脚本实现,5,6步扔进消息队列中异步执行
1.新增优惠券
@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
// 保存优惠券
save(voucher);
// 保存秒杀信息
SeckillVoucher seckillVoucher = new SeckillVoucher();
seckillVoucher.setVoucherId(voucher.getId());
seckillVoucher.setStock(voucher.getStock());
seckillVoucher.setBeginTime(voucher.getBeginTime());
seckillVoucher.setEndTime(voucher.getEndTime());
seckillVoucherService.save(seckillVoucher);
// 保存秒杀库存到Redis中
//private static final String SECKILL_STOCK_KEY ="seckill:stock:"
stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}
2和3.秒杀脚本seckill.lua
-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]
-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId
-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
-- 3.2.库存不足,返回1
return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
-- 3.3.存在,说明是重复下单,返回2
return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0
4.从消息队列读取消息,实现下单
使用线程池在项目启动时阻塞读取消息队列
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
@PostConstruct
private void init() {
SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
private class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
// 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >
List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from("g1", "c1"),
StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)),
StreamOffset.create("stream.orders", ReadOffset.lastConsumed())
);
// 2.判断订单信息是否为空
if (list == null || list.isEmpty()) {
// 如果为null,说明没有消息,继续下一次循环
continue;
}
// 解析数据
MapRecord<String, Object, Object> record = list.get(0);
Map<Object, Object> value = record.getValue();
VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
// 3.创建订单
createVoucherOrder(voucherOrder);
// 4.确认消息 XACK
stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
} catch (Exception e) {
log.error("处理订单异常", e);
handlePendingList();
}
}
}
// 异常时进行应答
private void handlePendingList() {
while (true) {
try {
// 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0
List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from("g1", "c1"),
StreamReadOptions.empty().count(1),
StreamOffset.create("stream.orders", ReadOffset.from("0"))
);
// 2.判断订单信息是否为空
if (list == null || list.isEmpty()) {
// 如果为null,说明没有异常消息,结束循环
break;
}
// 解析数据
MapRecord<String, Object, Object> record = list.get(0);
Map<Object, Object> value = record.getValue();
VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
// 3.创建订单
createVoucherOrder(voucherOrder);
// 4.确认消息 XACK
stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
} catch (Exception e) {
log.error("处理订单异常", e);
}
}
}
}
下单方法
private void createVoucherOrder(VoucherOrder voucherOrder) {
Long userId = voucherOrder.getUserId();
Long voucherId = voucherOrder.getVoucherId();
// 创建锁对象
RLock redisLock = redissonClient.getLock("lock:order:" + userId);
// 尝试获取锁
boolean isLock = redisLock.tryLock();
// 判断
if (!isLock) {
// 获取锁失败,直接返回失败或者重试
log.error("不允许重复下单!");
return;
}
try {
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
log.error("不允许重复下单!");
return;
}
// 6.扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
log.error("库存不足!");
return;
}
// 7.创建订单
save(voucherOrder);
} finally {
// 释放锁
redisLock.unlock();
}
}
7.redis消息队列
什么是消息队列:字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色:
- 消息队列:存储和管理消息,也被称为消息代理(Message Broker)
- 生产者:发送消息到消息队列
- 消费者:从消息队列获取消息并处理消息
使用队列的好处在于 **解耦:**所谓解耦,举一个生活中的例子就是:快递员(生产者)把快递放到快递柜里边(Message Queue)去,我们(消费者)从快递柜里边去拿东西,这就是一个异步,如果耦合,那么这个快递员相当于直接把快递交给你,这事固然好,但是万一你不在家,那么快递员就会一直等你,这就浪费了快递员的时间,所以这种思想在我们日常开发中,是非常有必要的。
这种场景在我们秒杀中就变成了:我们下单之后,利用redis去进行校验下单条件,再通过队列把消息发送出去,然后再启动一个线程去消费这个消息,完成解耦,同时也加快我们的响应速度。
这里我们可以使用一些现成的mq,比如kafka,rabbitmq等等,但是呢,如果没有安装mq,我们也可以直接使用redis提供的mq方案,降低我们的部署和学习成本。
list实现消息队列
消息队列(Message Queue),字面意思就是存放消息的队列。而Redis的list数据结构是一个双向链表,很容易模拟出队列效果。
队列是入口和出口不在一边,因此我们可以利用:LPUSH 结合 RPOP、或者 RPUSH 结合 LPOP来实现。
不过要注意的是,当队列中没有消息时RPOP或LPOP操作会返回null,并不像JVM的阻塞队列那样会阻塞并等待消息。因此这里应该使用BRPOP或者BLPOP来实现阻塞效果。
基于List的消息队列有哪些优缺点?
优点:
- 利用Redis存储,不受限于JVM内存上限
- 基于Redis的持久化机制,数据安全性有保证
- 可以满足消息有序性
缺点:
- 无法避免消息丢失
- 只支持单消费者
PubSub实现消息队列
PubSub(发布订阅)是Redis2.0版本引入的消息传递模型。顾名思义,消费者可以订阅一个或多个channel,生产者向对应channel发送消息后,所有订阅者都能收到相关消息。
SUBSCRIBE channel [channel] :订阅一个或多个频道
PUBLISH channel msg :向一个频道发送消息
PSUBSCRIBE pattern[pattern] :订阅与pattern格式匹配的所有频道
基于PubSub的消息队列有哪些优缺点?
优点:
- 采用发布订阅模型,支持多生产、多消费
缺点:
- 不支持数据持久化
- 无法避免消息丢失
- 消息堆积有上限,超出时数据丢失
stream实现消息队列
Stream 是 Redis 5.0 引入的一种新数据类型,可以实现一个功能非常完善的消息队列。
STREAM类型消息队列的XREAD命令特点:
- 消息可回溯
- 一个消息可以被多个消费者读取
- 可以阻塞读取
- 有消息漏读的风险
stream的消息队列-消费者组
消费者组(Consumer Group):将多个消费者划分到一个组中,监听同一个队列。具备下列特点:
创建消费者组:
XGROUP CREATE key groupname <id | $> [MKSTREAM] [ENTRIESREAD entries_read]
key:队列名称
groupName:消费者组名称
ID:起始ID标示,$代表队列中最后一个消息,0则代表队列中第一个消息
MKSTREAM:队列不存在时自动创建队列
其它常见命令:
删除指定的消费者组
XGROUP DESTORY key groupName
给指定的消费者组添加消费者
XGROUP CREATECONSUMER key groupname consumername
删除消费者组中的指定消费者
XGROUP DELCONSUMER key groupname consumername
从消费者组读取消息:
XREADGROUP GROUP group consumer [COUNT count] [BLOCK milliseconds] [NOACK] STREAMS key [key ...] ID [ID ...]
- group:消费组名称
- consumer:消费者名称,如果消费者不存在,会自动创建一个消费者
- count:本次查询的最大数量
- BLOCK milliseconds:当没有消息时最长等待时间
- NOACK:无需手动ACK,获取到消息后自动确认
- STREAMS key:指定队列名称
- ID:获取消息的起始ID:
“>”:从下一个未消费的消息开始
其它:根据指定id从pending-list中获取已消费但未确认的消息,例如0,是从pending-list中的第一个消息开始
STREAM类型消息队列的XREADGROUP命令特点:
- 消息可回溯
- 可以多消费者争抢消息,加快消费速度
- 可以阻塞读取
- 没有消息漏读的风险
- 有消息确认机制,保证消息至少被消费一次
对比
实现看5.redis stream消息队列实现异步秒杀
,具体需求如下:
- 创建一个Stream类型的消息队列,名为stream.orders
- 修改之前的秒杀下单Lua脚本,在认定有抢购资格后,直接向stream.orders中添加消息,内容包含voucherId、userId、orderId
- 项目启动时,开启一个线程任务,尝试获取stream.orders中的消息,完成下单