ORB算法特征提取

news2024/11/29 3:42:45

声明:学习过程中的知识总结,欢迎批评指正。

ORB算法提取两路输入图像(图像A,图像B)的特征点,根据提取的特征点进行特征匹配得到特征对。

图像金字塔

因为在现实世界中,同一个物体可能会以不同的尺度出现在图像中。例如,当你走近一个物体时,它在图像中的尺度就会变大;当你远离一个物体时,它在图像中的尺度就会变小。而且在双目视角中同一物体的尺度也是不一样的,为了让特征点检测算法能够在不同尺度的图像中都能有效地检测到特征点,需要使用图像金字塔。图像金字塔是由原始图像(称为第0层Level0)经过多次下采样得到的,在每一层上重新运行特征点提取算法或者根据缩放因子把第0层的特征点均摊到其它层,这样,我们就可以在不同尺度的图像中都检测到特征点,从而实现尺度不变性。

计算FAST角点

  1. 选取像素p,假设它的亮度为Ip
  2. 设置一个阈值T(这个阈值指的是亮度差)
  3. 以像素p为中心,选取半径为3的圆上的16个像素点
  4. 假设在这个圆上,有连续N个点的亮度大于Ip+T或小于Ip-T,那么像素p就被认为是特征点
  5. 循环上面几步,对每个像素都执行相同操作

可以理解成用一个7×7的卷积核,把图像进行遍历。

四叉树均匀化

通过四叉树均匀化把每层图像中的特征点的分布调整的更加均匀一些,在图像处理和计算机视觉中,特征点的分布往往会影响到后续算法的性能。如果特征点集中在图像的某一部分,那么这可能会导致对图像其他部分的信息损失,从而影响到后续算法的精度。

四叉树均匀化步骤:

  1. 将图像分割成四个等大小的区域(也就是四叉树的根节点)。
  2. 在每个区域中选择一定数量的特征点。如果某个区域中的特征点数量超过了预设的阈值,那么就继续将这个区域分割成四个子区域,并在每个子区域中选择特征点。
  3. 重复上述过程,直到所有的区域中的特征点数量都不超过阈值,或者达到了预设的最大深度。

BRIEF、ORB描述子

BRIEF算法的核心思想就是在特征点P周围以一定模式选取N个点对,比较点对的两个点(比如p,q)所在的灰度值大小:如果p比q大,则取1,反之取0。如果取了256个这样的p,q,就会得到256维由0,1组成的向量,而这个向量就是这个点的唯一表示,就可以称之为描述子。通过上述步骤我们得到了图像A和图像B的图像金字塔以及每一层中均匀分布的特征点,然后对这些特征点进行BRIEF描述子计算。FAST角点是没有方向信息的,那么在图像发生旋转的时候,其描述子也会发生变化,为了是的特征点具有旋转不变形,引出了灰度质心法来计算特征点的方向。

Steer BRIED描述子:上面所说的BRIEF算法,在将图像旋转后,描述子就会发生变化,为了使得描述子对旋转鲁棒,提出了灰度质心法(这个原理在下面讲解)具体做法就是将固定的pattern进行坐标转换,转换的坐标就是灰度质心法求解的向量作为x轴所在的坐标系,然后用转换后的pattern坐标下所在的像素进行对比,同样会得到唯一的描述子。如下图所示,Q就是灰度质心,坐标转换成PQ是x轴的坐标系:

BRIEF描述子的计算过程如下:

  1. 首先,选取特征点周围的一个小区域,通常是一个正方形区域。
  2. 然后,在这个区域内随机选择一对像素,计算它们的灰度值差。
  3. 如果灰度值差大于0,那么在BRIEF描述子中对应的位置为1,否则为0。
  4. 重复上述过程,直到得到一个足够长的二进制向量。通常,BRIEF描述子的长度可以是128、256或512。

ORB(Oriented FAST and Rotated BRIEF)描述子是在BRIEF的基础上加入旋转不变性的。这是通过引入特征点的方向信息来实现的。

具体的步骤:

  1. 特征点检测:ORB使用FAST角点检测器来找到图像中的特征点。
  2. 计算特征点的方向:对于每个关键点,ORB计算其周围像素的质心,然后计算特征点到质心的向量,该向量的角度就是特征点的方向。具体来说,如果图像中的点为𝑝(𝑥,𝑦),其强度质心为𝐶,则角度𝜃可以通过下面的公式计算:其中,𝑝是特征点周围的像素,𝐶是这些像素的质心,𝑥和𝑦是像素的坐标。
  3. 生成旋转不变的BRIEF描述子:在生成BRIEF描述子的时候,ORB考虑了特征点的方向。具体来说,它根据特征点的方向,将比较的像素对进行旋转,然后再比较它们的灰度值。这样生成的BRIEF描述子就具有旋转不变性了。

非极大值抑制

在特征点检测和描述子生成的过程中,非极大值抑制(Non-Maximum Suppression,NMS)是一个常用的步骤,用于减少冗余的特征点,并保留最显著的特征点。这在处理大量图像数据时是非常重要的,因为它可以显著减少计算量和存储需求。

特别是在特征点检测阶段,我们通常会得到大量的候选特征点,其中许多可能是相互非常接近或者在某种程度上是冗余的。非极大值抑制就是在这些候选特征点中选择最显著的特征点。通常,这是通过比较每个特征点与其邻域内其他特征点的响应值来实现的。只有当一个特征点的响应值大于其所有邻域内的其他特征点时,我们才保留这个特征点。

然而,对于特征点的主方向的计算,非极大值抑制并不常用。主方向的计算通常是基于特征点周围像素的梯度方向和大小,通过形成一个方向直方图,然后找到直方图的峰值来确定的。这个过程并不涉及非极大值抑制。但在某些算法中,可能会在计算主方向后再次使用非极大值抑制,以进一步减少特征点的数量。

特征点匹配

对同一层中的特征点进行特征匹配得到特征对,然后把每一层得到的特征对都叠加到第0层,再到一连串完整的特征对。

  1. 特征描述子计算:对每个特征点,计算其特征描述子。这可以使用BRIEF、SIFT、SURF、ORB等方法。
  2. 特征描述子比较:计算两个图像中所有特征描述子之间的距离。这通常使用欧氏距离或汉明距离,取决于特征描述子的类型,如果是使用具有旋转不变性的描述子计算方法,那么可以通过汉明距离来比较他们之间的距离。
  3. 匹配:根据特征描述子之间的距离,找到最相似的特征点对。常用的策略有最近邻匹配(Nearest Neighbor matching)和比值测试(Ratio Test)。最近邻匹配是找到距离最近的特征点对,而比值测试是找到第二近的特征点,并计算最近和第二近的距离比值,如果这个比值小于某个阈值(如0.8),则认为这是一个好的匹配。
  4. 剔除错误匹配:由于噪声和其他因素的影响,可能会产生一些错误的匹配。因此,通常需要使用一些方法来剔除这些错误的匹配,如RANSAC(RANdom SAmple Consensus)算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1825120.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

leetcode-09-[232]用栈实现队列[225]用队列实现栈[20]有效的括号[1047]删除字符串中的所有相邻重复项

重点: 栈和队列 Java中 栈不建议用stack来实现 建议用 ArrayDeque和Linkedlist来实现 队列建议用ArrayDeque和Linkedlist来实现 两者效率比较: java - Why is ArrayDeque better than LinkedList - Stack Overflow 基于Linkedlist是链表等,除…

MySQL数据操作与查询-T5 MySQL函数

一、数学函数和控制流函数 1、数学函数 (1)abs(x) 计算x的绝对值。 1 select abs(‐5.5),abs(10) (2)pow(x,y) 计算x的y次方的值。 1 select pow(2,8),pow(8,2) (3)round(x) 和 round(x,y) 对数字x进…

力扣hot100:75. 颜色分类(双指针)

75.颜色分类 本题是经典的「荷兰国旗问题」,由计算机科学家 Edsger W. Dijkstra 首先提出。 75. 颜色分类 1、遍历两遍 遍历两遍,第一遍放置0的位置,第二遍放置1的位置,我们只需要维护一个当前放置位置即可。 class Solution…

数字人直播系统源码,不需要高价购买,只需这个价!

在技术领域,系统源码的价格往往令人咋舌,尤其是涉及到高端应用如数字人直播系统时。那么,一套数字人直播系统源码到底需要多少钱?面对高昂的价格,是否还值得进入这个行业? 首先,我们要认识到数…

MoCo v3(ICCV 2021)

paper:An Empirical Study of Training Self-Supervised Vision Transformers official implementation:https://github.com/facebookresearch/moco-v3 出发点 本文并没有提出一种新的方法,而是对计算机视觉领域最近进展中的一个重要且基础…

JavaScript-函数

学习目标: 掌握函数 学习内容: 为什么需要函数函数使用函数传参函数返回值函数细节补充函数作用域匿名函数案例 为什么需要函数: 函数:function 是被设计为执行特定任务的代码块。说明:函数可以把具有相同或相似逻辑…

Spring Aop及事务管理

5 Spring AOP AOP概述 AOP:全称是 Aspect Oriented Programming 即:面向切面编程。简单的说它就是把我们程序重复的代码抽取出来,在需要执行的时候,使用动态代理的技术,在不修改源码的基础上,对我们的已有…

CinemachineFreelook相机鬼畜抖动的解决方法

又是培训机构的出品。。。。。。 2020.3.27 发现跟随时抖动的原因了,其实应该按照传统相机的跟随逻辑放在late update里执行,但是由于开发cinemachine的开发组很坑地把cinemachine freelook里的三个轨道Damping值默认给了3,于是相机会以每0.7…

【Windows】DNG Converter(DNG格式转换器)软件介绍

软件介绍 DNG Converter是一款免费软件,用于将数码相机原始RAW图像文件转换为DNG格式(数字负片)文件。DNG格式是一种数字负片格式,它旨在成为一种行业标准,以便摄影师可以使用一个统一的格式来存储其相机拍摄的原始图…

探索高效存储与快速查找: 深入了解B树数据结构

探索高效存储与快速查找: 深入了解B树数据结构 一、什么是B树二、B树的实现2.1 节点的定义2.2 插入关键字2.3 删除关键字2.4 查找关键字2.5 遍历B树 一、什么是B树 B树,也称为B-tree,是一种多路平衡查找树。它被广泛用于文件系统和数据库之中&#xff0c…

SringBoot 如何使用HTTPS请求及Nginx配置Https

SringBoot 如何使用HTTPS请求及Nginx配置Https SringBoot 如何使用HTTPS请求生成证书导入证书及配制创建配置类将pfx转成.key和.pem Nginx 安装SSL依赖./configure 安装依赖编译安装完openssl后报了新错 Nginx配置 SringBoot 如何使用HTTPS请求 生成证书 由于业务数据在传输过…

Python保姆级教程 数据类型—新手小白入门必看

python学习资料,下方已打包好 一、基本数据类型与变量(上) 2.1 注释 优点: 代码说明 没注释的代码 有注释的代码 不让解释器执行注释的那句话 2.2 单行注释 单行注释快捷键:ctrl ? 2.3多行注释 …

服务器如何有效解决源IP暴露问题

在现代互联网环境中,服务器的安全性至关重要。源IP暴露不仅增加了服务器遭受DDoS攻击、恶意扫描和数据泄露的风险,还可能影响业务的正常运行。本文将探讨如何利用技术手段,尤其是CDN和防火墙策略,来有效地解决服务器源IP暴露的问题…

redis+lua实现分布式限流

redislua实现分布式限流 文章目录 redislua实现分布式限流为什么使用redislua实现分布式限流使用ZSET也可以实现限流,为什么选择lua的方式实现依赖lua脚本yaml代码实现 Jmeter压测 为什么使用redislua实现分布式限流 原子性:通过Lua脚本执行限流逻辑&am…

融合心血管系统(CVS)多视角信号的新架构新策略

随着深度学习的发展和传感器的广泛采用,自动多视角融合(MVF)在心血管系统(CVS)信号处理方面取得了进展。然而,普遍的MVF模型架构通常将同一时间步骤但不同视角的CVS信号混合成统一的表示形式,忽…

RFID技术在农产品管理中的应用

使用RFID技术对农产品生产、加工、存储和销售的全过程进行跟踪,追溯食品的生产和加工过程,能够有效加强农产品的管理,如图7—10所示。 将RFID技术应用于农业食品安全,首先是建立完整、准确的食品供应链信息记录。借助RFID 对物体…

unity简单数字拼图小游戏(源码)

代码: using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.EventSystems; using UnityEngine.SceneManagement;public class DragImage : MonoBehaviour, IBeginDragHandler, IDragHandler, IEndDragHandler {pub…

1_常见指令【Linux中常见30个指令的学习和使用】【万字长文】

常见指令以及权限理解 开始学习linux前的注意事项 在学习linux之前,我们要知道linux是一个操作系统。 那操作系统是什么呢?(这里只做大概了解) 操作系统就是一个管理软硬件的软件。 它对上提供良好(稳定、高效、安…

大模型Prompt-Tuning技术入门

Prompt-Tuning方法 1 NLP任务四种范式 目前学术界一般将NLP任务的发展分为四个阶段,即NLP四范式: 第一范式:基于「传统机器学习模型」的范式,如TF-IDF特征朴素贝叶斯等机器算法;第二范式:基于「深度学习模…

Echarts图表: 矩形树图都有哪些配置项,一文告诉你

Hello,本期和大家分享矩形树图的配置项,欢迎评论区和贝格前端工场互动交流。 一、矩形树图是什么 矩形树图是ECharts中的一种图表类型,用于展示树形结构的数据。矩形树图通过矩形的大小和位置来表示树形结构中节点的层次关系和数据的大小。…