【机器学习300问】118、循环神经网络(RNN)的基本结构是怎样的?

news2025/4/25 21:28:57

        将讲解循环神经网络RNN之前,我先抛出几个疑问:为什么发明循环神经网络?它的出现背景是怎样的?这些问题可以帮助我们更好的去理解RNN。下面我来逐一解答。

一、循环神经网络诞生的背景

        循环神经网络(RNN)的诞生主要是为了解决传统神经网络在处理序列数据时的局限性,尤其是它们无法有效捕获和利用时间序列或序列数据中的顺序依赖信息。

(1)传统神经网络的局限性

① 独立性假设

        前馈神经网络假设输入数据之间相互独立,这与实际情况下许多数据集的自然属性相悖。在自然语言和视频流等应用中,每个元素都与时间上下文紧密相关,网络需要捕捉到这些信息才能进行有效的特征提取和模式识别

② 信息传递的单向性

        前馈网络的信息传递是单向的,从输入层流向输出层,中间无环路。这使得信息只能按照一个方向流动,限制了信息反馈和动态更新,不利于处理序列数据中常见的长距离依赖问题。

③ 缺乏记忆能力

        前馈网络缺乏“记忆”能力,无法存储先前的输入信息,无法共享在不同时间学习到的特征,这对于时序数据的处理是一个重大缺陷。例如,当预测一句话中的下一个单词时,网络需要“记住”前面的语境。

(2)序列数据的需求增加

        随着自然语言处理、语音识别、音乐生成、视频分析等领域的发展,对能够理解和生成序列数据的模型需求日益增长。这些领域的任务往往需要模型能够理解和生成基于时间或位置依赖的输出。

① 自然语言处理

        语言是由词汇按特定顺序组成的,词序影响语义解析。自然语言处理任务,如机器翻译和情感分析,需要模型理解文本中词与词之间的时间先后关系。

② 语音识别与音乐生成

        语音信号具有明显的时间序列特性,识别或生成语音需要模型具备处理时序信息的能力。音乐生成亦是如此,音符的顺序直接影响旋律的流畅度和和谐度。

③ 视频分析

        视频数据可以看作是一系列连续的图像帧,各帧之间存在强时间关联。视频分析任务,如动作识别,需要网络能够处理这种时间序列信息。

二、循环神经网络的基本结构

        那么循环神经网络是如何通过结构设计来解决上述传统前馈神经网络遇到的问题呢?下面让我们看看单层RNN的结构设计

(1)单层RNN的结构设计

① 结构设计

        与前馈神经网络不同,RNN中的每个时间步的神经元不仅接受当前时间步的输入数据,还接受上一时间步的隐藏状态信息。这个隐藏状态可以视为网络对序列到目前为止所见信息的一种“记忆”。每次迭代都基于前一时间步的输出和当前的输入。

有时候也把RNN的网络结构折叠起来表示:

② 符号解释

        上图中前一个时间步得到的激活值a会传递给下一个时间步。在RNN中想要预测\hat y^{<3>}不仅用到了x^{<3>}还用到了之前的x^{<1>},x^{<2>}。但如图所示RNN在预测\hat y^{<3>}没有用到其之后的x^{<4>},...,x^{<T_x>}这是它的局限性(可以通过双向循环神经网络解决,之后写文章介绍)。

a^{<1>} = g(W_{aa}a^{<0>}+W_{ax}x^{<1>}+b_a)

\hat y^{<1>} = g(W_{ya}a^{<1>}+b_y)

通常初始化激活值a^{<0>}设置成零向量。其他激活值a^{<t>}和预测值\hat y^{<t>}的公式如上所示。

(2)不同类型的循环神经网络

        循环神经网络(RNN)因其灵活性能够适应不同类型的任务,具体可以分为以下几种常见的模式。

① 一对多

        音乐生成是一个典型的一对多场景。这类任务中,网络通常从一个初始输入(如一个起始音符或音乐风格的编码)开始,然后生成一个序列输出(即后续的音符序列),形成完整的音乐作品。RNN在此过程中能够捕捉到序列内部的依赖关系,生成连贯的音乐流。

② 多对一

        情感分析是多对一任务的代表。在这样的任务里,网络接收一个序列输入(如一句话或一段文本),并通过整个序列的处理,最终产生单个输出值(例如,这段文本的情感分类标签,如正面、负面或中立)。网络学习在整个输入序列中提取特征,用于做出整体判断。

③ 多对多(T_x=T_y

        命名实体识别(NER)是多对多任务的实例。在命名实体识别中,输入是一个文本序列,输出是对文本中每个单词或标记的分类(如人名、地点、组织等)。

④ 多对多(T_x\neq T_y

        机器翻译是多对多任务的实例。在机器翻译任务中,输入是一个语言的句子序列,输出是另一个语言的等价翻译序列,两个序列通常长度不一,要求模型既能理解输入序列的结构和语义,又能生成相应长度和语义的输出序列。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1823210.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OrangePi Kunpeng Pro 安装 ROS2 + Gazebo

文章目录 1. 初识1.1 到手开箱1.2 OrangePi Kunpeng Pro1.2 上电 2. 安装Ubuntu2.1 准备工作2.2 安装 3. 安装ROS23.1 设置支持UTF-8的locale编码3.2 添加证书3.3 安装ROS3.4 设置环境变量3.5 小海龟来啦 4. 运行实例4.1 安装Gazebo4.2 安装turtlebot 总结 1. 初识 1.1 到手开…

springboot、springcloud、springcloudalibaba版本组件之间对应关系

参考 https://github.com/alibaba/spring-cloud-alibaba/wiki/%E7%89%88%E6%9C%AC%E8%AF%B4%E6%98%8E#%E6%AF%95%E4%B8%9A%E7%89%88%E6%9C%AC%E4%BE%9D%E8%B5%96%E5%85%B3%E7%B3%BB%E6%8E%A8%E8%8D%90%E4%BD%BF%E7%94%A8 毕业版本依赖关系(推荐使用) 由于 Spring Boot 3.0&…

linux服务器网络配置

目录 1、centos的网络配置1.1 静态Ipv4配置方法&#xff1a;1.2 动态Ipv4的设置方法1.3 常见ping不通网关的原因&#xff1a;1.4 查看操作系统版本1.5 查看一台服务器的所有服务1.6 猜测所在房间网关ip 2、 Ubuntu的网络配置&#xff08;静态ipv4&#xff09;3、2024.6.14 解决…

《精通ChatGPT:从入门到大师的Prompt指南》第6章:日常对话与问答

第6章&#xff1a;日常对话与问答 6.1 提问技巧 提问技巧在使用ChatGPT时至关重要&#xff0c;因为高质量的提问能够得到更为准确和有价值的回答。以下是一些关键技巧和方法&#xff0c;帮助你掌握提问的艺术。 1. 明确问题目标 在提问之前&#xff0c;首先要明确你希望从C…

干G货,性能测试基本方法和原则,

一、性能测试关键点 评估性能指标——线程tps&#xff08;可架构给&#xff09; 吞吐量qps&#xff08;可架构给&#xff09; 错误率&#xff08;可架构给&#xff09; 平均响应时间&#xff08;可架构给&#xff09;模拟线上数据量了解接口有没有缓存&#xff0c;有缓存的需要…

同三维T80005EHS-4K60 4K60 HDMI/SDI编码器

1路4K60 HDMI或12G SDI输入&#xff0c;2路3.5MM音频输入&#xff0c;对应HDMI或SDI&#xff0c;1个USB口和1个SD卡槽&#xff0c;可录像到U盘/移动硬盘/SSD硬盘/TF卡 产品简介&#xff1a; 同三维T80005EHS-4K60 4K60HDMI/SDI H.265编码器采用最新高效H.265高清数字视频压缩…

CV预测:快速使用ResNet深度残差神经网络并创建自己的训练集

AI预测相关目录 AI预测流程&#xff0c;包括ETL、算法策略、算法模型、模型评估、可视化等相关内容 最好有基础的python算法预测经验 EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transform…

基于hispark_taurus开发板示例学习OpenHarmony编译构建系统(2)

3、hispark_taurus产品解决方案-Vendor 产品解决方案为基于开发板的完整产品&#xff0c;主要包含产品对OS的适配、组件拼装配置、启动配置和文件系统配置等。产品解决方案的源码路径规则为&#xff1a;vendor/{产品解决方案厂商}/{产品名称}_。_产品解决方案也是一个特殊的组…

Sentence Transformers x SwanLab:可视化Embedding训练

Sentence Transformers(又名SBERT)是访问、使用和训练文本和图像嵌入&#xff08;Embedding&#xff09;模型的Python库。 你可以使用Sentence Transformers快速进行模型训练&#xff0c;同时使用SwanLab进行实验跟踪与可视化。 1. 引入SwanLabCallback from swanlab.integra…

【Hachker News】如果你不需要钱,你会干什么?

Hachker News上的一个问题&#xff0c;标题是“如果你不需要钱&#xff0c;你会做什么&#xff1f;” 回答摘要 问题链接&#xff1a;What would you spend your time working on if you didn’t need money? A1&#xff1a; 我会把时间投入到城市周围的农村地区&#xff0c…

快慢指针在字符串中的应用-443. 压缩字符串

题目链接及描述 443. 压缩字符串 - 力扣&#xff08;LeetCode&#xff09; 题目分析 这个题目总体不算太难&#xff0c;如果之前接触过双指针&#xff08;快慢指针&#xff09;的话&#xff0c;比较好做。题目可以理解为计算数组中对应各个连续字符出现的次数&#xff0c;并将…

工控机与普通电脑的区别对于工业自动化应用至关重要

商用计算机和工业计算机之间的相似之处可能多于差异之处。工业电脑利用了消费技术领域的许多进步&#xff0c;但增加了工业应用所必需的软件、编程、确定性和连接性。 专业人士表示&#xff1a;“从增加内存到摩尔定律所描述的处理能力的指数级增长&#xff0c;工业控制必将受…

【iOS】KVO相关总结

目录 1. 什么是KVO&#xff1f;2. KVO的基本使用3. KVO的进阶使用observationInfo属性context 的使用KVO触发监听方法的方式自动触发手动触发 KVO新旧值相等时不触发KVO的从属关系一对一关系一对多关系 4. KVO使用注意5. KVO本质原理分析伪代码保留伪代码下的类并编译运行对比添…

QT信号与槽/窗口组件优化

使用手动连接&#xff0c;将登录框中的取消按钮使用第二中连接方式&#xff0c;右击转到槽&#xff0c;在该槽函数中&#xff0c;调用关闭函数 将登录按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在槽函数中判断u界面上输入的账号是否为"admin"&#xff0c;…

前缀和算法:算法秘籍下的数据预言家

✨✨✨学习的道路很枯燥&#xff0c;希望我们能并肩走下来! 文章目录 目录 文章目录 前言 一. 前缀和算法的介绍 二、前缀和例题 2.1 【模版】前缀和 2.2 【模板】二维前缀和 2.3 寻找数组的中间下标 2.4 除自身以外数组的乘积 2.5 和为k的子数组 2.6 和可被k整除的子数组 2.7 …

如何将NextJs中的File docx保存到Prisma ORM

背景/引言 在现代 Web 开发中&#xff0c;Next.js 是一个备受欢迎的 React 框架&#xff0c;它具有许多优点&#xff0c;如&#xff1a; 服务器端渲染 (SSR)&#xff1a;Next.js 支持服务器端渲染&#xff0c;可以提高页面加载速度&#xff0c;改善 SEO&#xff0c;并提供更好…

【AI工具】jupyter notebook和jupyterlab对比和安装

简单说&#xff0c;jupyterlab是jupyter notebook的下一代。 选择安装一个即可。 一、这里是AI对比介绍 Jupyter Notebook和JupyterLab都是基于Jupyter内核的交互式计算环境&#xff0c;但它们在设计和功能上有一些关键的区别&#xff1a; 用户界面&#xff1a; Jupyter Not…

关于对pagination.js源代码进行修改且引入项目使用

实现效果 使用定时器对组件进行每秒请求&#xff0c;每过固定时间之后&#xff0c;进行下一页项目请求&#xff0c;进行到最后一页请求的时候返回第一页。 首先引入js插件 <script src"./js/pagination.js" type"text/javascript"></script>…

粉丝经济时代:微信订阅号如何助力中小企业增长

在数字化浪潮席卷全球的今天&#xff0c;微信订阅号凭借其独特的优势&#xff0c;成为了中小企业数字化出海的重要工具。作为NetFarmer&#xff0c;我们致力于帮助企业充分利用这一平台&#xff0c;推动业务发展和市场拓展。今天将深入探讨微信订阅号的概念、用途、使用方法、适…

若依修改浏览器标题logo

在线生成透明ICO图标——ICO图标制作https://www.ico51.cn/