【机器学习】支持向量机(个人笔记)

news2024/11/24 16:55:22

文章目录

  • SVM 分类器的误差函数
    • 分类误差函数
    • 距离误差函数
    • C 参数
  • 非线性边界的 SVM 分类器(内核方法)
    • 多项式内核
    • 径向基函数(RBF)内核

源代码文件请点击此处!

SVM 分类器的误差函数

SVM 使用两条平行线,使用中心线作为参考系 L :   w 1 x 1 + w 2 x 2 + b = 0 L: \ w_1x_1 + w_2x_2 + b = 0 L: w1x1+w2x2+b=0。我们构造两条线,一条在上面,一条在下面,分别为:

L + :   w 1 x 1 + w 2 x 2 + b = 1 L − :   w 1 x 1 + w 2 x 2 + b = − 1 L+: \ w_1x_1 + w_2x_2 + b = 1 \\ L-: \ w_1x_1 + w_2x_2 + b = -1 L+: w1x1+w2x2+b=1L: w1x1+w2x2+b=1

分类器由 L + L+ L+ L − L- L 组成。为训练 SVM,我们需要为由两条线组成的分类器构建一个误差函数,期望达成的目标有两个:

  • 两条线中的每一条都应尽可能对点进行分类。
  • 两条线应尽可能彼此远离。

误差函数表示如下:

误差 = 分类误差 + 距离误差 误差 = 分类误差 + 距离误差 误差=分类误差+距离误差

分类误差函数

( x 1 , x 2 ) (x_1, x_2) (x1,x2) 的预测函数为

y ^ = s t e p ( w 1 x 1 + w 2 x 2 + b ) \hat{y} = step(w_1x_1 + w_2x_2 + b) y^=step(w1x1+w2x2+b)

显然这是一个离散感知器,其中:

y = s t e p ( x ) = { 0 , x ≤ 0 1 , x > 0 y = step(x) = \begin{cases} 0, x \leq 0 \\ 1, x > 0 \end{cases} y=step(x)={0,x01,x>0

定义分类误差函数如下:

{ 0 , 错误分类 ∣ w 1 x 1 + w 2 x 2 + b ∣ , 正确分类 \begin{cases} 0, 错误分类 \\ |w_1x_1 + w_2x_2 + b|, 正确分类 \end{cases} {0,错误分类w1x1+w2x2+b,正确分类

例如,考虑标签为 0 0 0 的点 ( 4 , 3 ) (4,3) (4,3),两个感知器给出的预测为:

L + : y ^ = s t e p ( 2 x 1 + 3 x 2 − 7 ) = 1 L − : y ^ = s t e p ( 2 x 1 + 3 x 2 − 5 ) = 1 L+: \hat{y} = step(2x_1 + 3x_2 - 7) = 1 \\ L-: \hat{y} = step(2x_1 + 3x_2 - 5) = 1 L+:y^=step(2x1+3x27)=1L:y^=step(2x1+3x25)=1

可以看到两个感知器均预测错误,此时分类误差为:

∣ 2 x 1 + 3 x 2 − 7 ∣ + ∣ 2 x 1 + 3 x 2 − 5 ∣ = 22 |2x_1 + 3x_2 - 7| + |2x_1 + 3x_2 - 5| = 22 ∣2x1+3x27∣+∣2x1+3x25∣=22

距离误差函数

若两个线性方程如下:

L + :   w 1 x 1 + w 2 x 2 + b = 1 L − :   w 1 x 1 + w 2 x 2 + b = − 1 L+: \ w_1x_1 + w_2x_2 + b = 1 \\ L-: \ w_1x_1 + w_2x_2 + b = -1 L+: w1x1+w2x2+b=1L: w1x1+w2x2+b=1

根据两条平行直线间的距离公式:

d = ∣ C 1 − C 2 ∣ A 2 + B 2 d = \frac{|C_1 - C_2|}{\sqrt{A^2 + B^2}} d=A2+B2 C1C2

则这两条平行线的垂直距离为:

d = 2 w 1 2 + w 2 2 d = \frac{2}{\sqrt{w_1^2 + w_2^2}} d=w12+w22 2

此为距离误差。注意到,当 w 1 2 + w 2 2 w_1^2 + w_2^2 w12+w22 很大时, d d d 很小;当 w 1 2 + w 2 2 w_1^2 + w_2^2 w12+w22 很小时, d d d 很大。因此 w 1 2 + w 2 2 w_1^2 + w_2^2 w12+w22 是一个很好的误差函数。

C 参数

很多时候我们希望 SVM 分类器能侧重于分类误差或距离误差其中一个方面,那么我们可以使用 C 参数:

误差 = C ⋅ 分类误差 + 距离误差 误差 = C \cdot 分类误差 + 距离误差 误差=C分类误差+距离误差

C 参数如何控制两者的呢?

  • C 很大:误差公式以分类误差为主,SVM 分类器更侧重于对点进行正确分类;
  • C 很小:误差公式以距离误差为主,SVM 分类器更侧重于保持线之间的距离。

下面是一个例子:

svm_c_001 = SVC(kernel='linear', C=0.01)
svm_c_001.fit(features, labels)
 
svm_c_100 = SVC(kernel='linear', C=100)
svm_c_100.fit(features, labels)

上图为 C=0.01 的情况,下图为 C=100 的情况:

在这里插入图片描述

在这里插入图片描述

非线性边界的 SVM 分类器(内核方法)

多项式内核

  • 在变量 x 1 , x 2 x_1, x_2 x1,x2 使用 2 阶多项式内核,就需要计算这些单项式: x 1 , x 2 , x 1 2 , x 1 x 2 , x 2 2 x_1, x_2, x_1^2, x_1x_2, x_2^2 x1,x2,x12,x1x2,x22,然后尝试把它们线性组合起来,比如通过检查发现这是一个有效的分类器公式: x 1 2 + x 2 2 = 1 x_1^2 + x_2^2 = 1 x12+x22=1
  • 这相当于将二维平面映射到一个五维平面,即点 ( x 1 , x 2 ) (x_1, x_2) (x1,x2) 到点 ( x 1 , x 2 , x 1 2 , x 1 x 2 , x 2 2 ) (x_1, x_2, x_1^2, x_1x_2, x_2^2) (x1,x2,x12,x1x2,x22) 的映射
  • 类似地,在变量 x 1 , x 2 x_1, x_2 x1,x2 使用 3 阶多项式内核,就需要计算这些单项式: x 1 , x 2 , x 1 2 , x 1 x 2 , x 2 2 , x 1 3 , x 1 2 x 2 , x 1 x 2 2 , x 2 3 x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3 x1,x2,x12,x1x2,x22,x13,x12x2,x1x22,x23,然后尝试把它们线性组合起来,通过检查发现一个有效的分类器公式

代码如下:

svm_degree_2 = SVC(kernel='poly', degree=2)
svm_degree_2.fit(features, labels)
print("[Degree=2] Accuracy=", svm_degree_2.score(features, labels))

svm_degree_4 = SVC(kernel='poly', degree=4)
svm_degree_4.fit(features, labels)
print("[Degree=4] Accuracy=", svm_degree_4.score(features, labels))

当分类器为 2 阶多项式的运行结果:

在这里插入图片描述

当分类器为 4 阶多项式的运行结果:

在这里插入图片描述

径向基函数(RBF)内核

径向基函数:

  • 当变量只有一个时,最简单的径向基函数为 y = e − x 2 y = e^{-x^2} y=ex2,此函数看起来像标准正态分布,函数凸起处为 x = 0 x=0 x=0
  • 当变量有 2 个时,最简单的径向基函数为 z = e − ( x 2 + y 2 ) z = e^{-(x^2 + y^2)} z=e(x2+y2),此函数看起来像标准正态分布,函数凸起处为 ( 0 , 0 ) (0,0) (0,0)
  • 当变量有 n n n 个时,基本径向基函数为 y = e − ( x 1 2 + . . . + x n 2 ) y = e^{-(x_1^2 + ... + x_n^2)} y=e(x12+...+xn2) n n n 维凸点以 0 为中心
  • 若希望以点 ( p 1 , . . . , p n ) (p_1, ..., p_n) (p1,...,pn) 为中心凸起,则基本径向基函数为 y = e − [ ( x 1 − p 1 ) 2 + . . . + ( x n − p n ) 2 ] y = e^{-[(x_1-p_1)^2 + ... + (x_n-p_n)^2]} y=e[(x1p1)2+...+(xnpn)2]
  • 添加 γ \gamma γ 参数: y = e − γ [ ( x 1 − p 1 ) 2 + . . . + ( x n − p n ) 2 ] y = e^{-\gamma[(x_1-p_1)^2 + ... + (x_n-p_n)^2]} y=eγ[(x1p1)2+...+(xnpn)2],用于控制拟合程度(形象理解,即调整凸起程度
    • γ \gamma γ 值非常小时,模型会欠拟合
    • γ \gamma γ 值非常大时,模型会严重过拟合,合适的 γ \gamma γ 值非常重要

相似度公式:

  • 对于点 p p p 和点 q q q 相似度 ( p , q ) = e − 距离 ( p , q ) 2 相似度(p,q) = e^{-距离(p,q)^2} 相似度(p,q)=e距离(p,q)2
  • 一维数据集中,点 x 1 x_1 x1 和点 x 2 x_2 x2 的相似度为 e − ( x 1 − x 2 ) 2 e^{-(x_1-x_2)^2} e(x1x2)2
  • 二维数据集中,点 A ( x 1 , y 1 ) A(x_1, y_1) A(x1,y1) 和点 B ( x 2 , y 2 ) B(x_2, y_2) B(x2,y2) 的相似度为 e − [ ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 ] e^{-[(x_1-x_2)^2 + (y_1-y_2)^2]} e[(x1x2)2+(y1y2)2]
  • 若该数据集有 n n n 个数据点,则应计算 n 2 n^2 n2 个相似度;每个点到自身的相似度一定为 1;距离越近,相似度越高

有了相似度公式,就可以定义分类器了。假设数据集有 n n n 个数据点 X i X_i Xi,每个点对应标签 L i L_i Li(取值为 0 或 1),则对于点 X X X 的分类预测如下:

y ^ = s t e p [ ∑ i = 1 n ( − 1 ) L i − 1 ⋅ e − 距离 ( X , X i ) 2 ] \hat{y} = step[\sum^n_{i=1} (-1)^{L_i - 1} \cdot e^{-距离(X, X_i)^2}] y^=step[i=1n(1)Li1e距离(X,Xi)2]

形象理解:这相当于在一个二维平面上,为标记为 0 的点添加了一个“山谷”,为标记为 1 的点添加了一个“山峰”。对每个点都如此操作,最后使用阈值 0 画出一个“海岸线”,这就是最后的分类边界(boundary)。

代码如下:

svm_gamma_01 = SVC(kernel='rbf', gamma=0.1)
svm_gamma_01.fit(features, labels)
print("[Gamma=0.1] Accuracy=", svm_gamma_01.score(features, labels))

svm_gamma_1 = SVC(kernel='rbf', gamma=1)
svm_gamma_1.fit(features, labels)
print("[Gamma=1] Accuracy=", svm_gamma_1.score(features, labels))


svm_gamma_10 = SVC(kernel='rbf', gamma=10)
svm_gamma_10.fit(features, labels)
print("[Gamma=10] Accuracy=", svm_gamma_10.score(features, labels))


svm_gamma_100 = SVC(kernel='rbf', gamma=100)
svm_gamma_100.fit(features, labels)
print("[Gamma=100] Accuracy=", svm_gamma_100.score(features, labels))

γ = 0.1 \gamma=0.1 γ=0.1 时的运行结果:
在这里插入图片描述

γ = 1 \gamma=1 γ=1 时的运行结果:

在这里插入图片描述

γ = 10 \gamma=10 γ=10 时的运行结果:

在这里插入图片描述

γ = 100 \gamma=100 γ=100 时的运行结果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1817435.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaEE大作业之班级通讯录系统(前端HTML+后端JavaEE实现)PS:也可选网络留言板、图书借阅系统、寝室管理系统

背景: 题目要求: 题目一:班级通讯录【我们选这个】 实现一个B/S结构的电子通讯录,其中的每条记录至少包含学号、姓名、性别、班级、手机号、QQ号、微信号,需要实现如下功能: (1)…

7.Nginx动静分离

介绍 把动态和静态请求分开,不能理解成只是单纯的把动态页面和静态页面物理分离。 动静分离从目前实现角度分为两种: 1.纯粹把静态文件独立成单独的域名,放在独立的静态资源服务器上,目前主流推崇的方案。 2.动态和静态文件混合在一起发布,通过nginx来分开。 通过loc…

16字节对齐算法

//16字节对齐算法 static inline size_t align16(size_t x) {return (x size_t(15)) & ~size_t(15); } 原理为 首先若x8 将原始的内存 8 与 size_t(15)相加,得到 8 15 23 将 size_t(15) 即 15进行~(取反)操作,~&#xff0…

【源码】校园小情书小程序最新版 校园小程序开发 微信情书小程序 校园小情书小程序源代码

校园小情书微信小程序源码 | 社区小程序前后端开源 | 校园表白墙交友小程序 功能: 表白墙 卖舍友 步数旅行 步数排行榜 情侣脸 漫画脸 个人主页 私信 站内消息 今日话题 评论点赞收藏 服务器环境要求:PHP7.0 MySQL5.7 …

【复旦邱锡鹏教授《神经网络与深度学习公开课》笔记】感知器

感知器是一种非常早期的线性分类模型,作为一种简单的神经网络模型被提出。感知器是一种模拟生物神经元行为的机器,有与生物神经元相对应的部件,如权重(突触)、偏置(阈值)及激活函数(…

数据库课设-中小企业工资管理系统

一、效果展示 二、后端代码 import string import random from flask import Flask, render_template, request, jsonify, redirect, session import pymysql from flask_cors import CORS import time import schedule from datetime import datetime import threading from …

【PB案例学习笔记】-20制作一个超链接按钮

写在前面 这是PB案例学习笔记系列文章的第19篇,该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习,提高编程技巧,以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码,小凡都上传到了gite…

Day 18:881. 救生艇

Leetcode 881. 救生艇 给定数组 people 。people[i]表示第 i 个人的体重 ,船的数量不限,每艘船可以承载的最大重量为 limit。 每艘船最多可同时载两人,但条件是这些人的重量之和最多为 limit。 返回 承载所有人所需的最小船数 。 这里有一个条…

高能氧化锌电阻片加速老化试验曲线和老化机理%生产测试过程

氧化锌压敏电阻片加速老化的试验方法和得到的试验结果不尽相同。在老化机理的研究中一般可以用加速老化试验时功率损耗随时间的变化来衡量老化性能。分析我们的以及大量国外研究者的试验结果,可以将阀片功率损耗随时间变化的特性大致分为三种不司的类型: 类型1:阀片本身的性能…

解决uview2中u--input输入框禁用状态下click事件不生效

需求:想要点击输入框,展示下拉内容 之前使用uview1是可以直接在input上添加click事件(禁用和只读情况下都不影响) 但是在uview2上直接写click不生效 解决方式:直接在写click.native"xxx" 代码部分&#x…

AI驱动的“黑匣子”可能使手术更安全

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

LeetCode | 26.删除有序数组中的重复项

在我接触到这道题的时候想的就是一次遍历,设置两个变量记录当前遍历到的数字和对应原数组应该修改的index,在运行过程中,因为原数组已经是有序的了,只不过会存在重复的数字,但是这些重复的数字也是挨在一起的&#xff…

AI学习指南机器学习篇-核技巧与非线性支持向量机

AI学习指南机器学习篇-核技巧与非线性支持向量机 在机器学习领域,核技巧(Kernel Trick)是一个非常重要的概念,它将线性支持向量机(SVM)扩展到非线性支持向量机,从而可以处理非线性的分类和回归…

运行mvn命令打包项目jar包报错?“Fatal error compiling: 无效的目标发行版: 19 ”, 让我来看看~

最近写实验,要打包项目,但是不管是在cmd运行“mvn clean package -Dmaven.test.skiptrue”命令,还是在idea上去操作,都出现了这样的一个错误: [EROR] Failed to exeoute goal org.apache.maven.plugins:maven-comnpile…

Linux 基本指令2

cp 指令 cp[选项]源文件 目标文件 将源文件的内容复制到目标文件中,源文件可以有多个,最后一个文件为目标文件,目标文件也可以是一段路径,若目的地不是一个目录的话会拷贝失败。若没有路径上的目录则会新建一个,若源是…

js实现一个数据结构——栈

栈的概念就不再赘述,无可厚非的先进后出,而JS又是高级语言,数组中的方法十分丰富,已经自带了push pop方法进行入栈出栈的操作。 1.基本实现 class Stack {constructor() {this.items [];}// 入栈push(item) {this.items.push(i…

HCIA1 华为VRP系统基本操作

1.实验组网介绍 使用PC电脑通过串口线,直连1台全新的路由器console port,进行简单配置。 2.配置思路 2.1配置设备名称 2.2配置路由器接口地址 2.3保存配置并重启设备 3.配置步骤 3.1 Console方式登录 略 3.2查看设备版本信息 3.3设备基本配置 &am…

抖音a_bogus爬虫逆向补环境

抖音a_bogus爬虫逆向补环境 写在前面 https://github.com/ShilongLee/Crawler 这是我为了学习爬虫而搭建的爬虫服务器项目,目标是作为一个高性能的可靠爬虫服务器为广大爬虫爱好者和安全工程师提供平台进行学习爬虫,了解爬虫,应对爬虫。现已…

C语言 | Leetcode C语言题解之第148题排序链表

题目: 题解: struct ListNode* merge(struct ListNode* head1, struct ListNode* head2) {struct ListNode* dummyHead malloc(sizeof(struct ListNode));dummyHead->val 0;struct ListNode *temp dummyHead, *temp1 head1, *temp2 head2;while…

【吊打面试官系列-Mysql面试题】锁的优化策略有哪些?

大家好,我是锋哥。今天分享关于 【锁的优化策略有哪些?】面试题,希望对大家有帮助; 锁的优化策略有哪些? 1、读写分离 2、分段加锁 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 3、减少锁持有的时间 4.多个线程尽量以相同的…