【内存管理】内存布局

news2024/10/5 15:33:09

ARM32位系统的内存布局图

32位操作系统的内存布局很经典,很多书籍都是以32位系统为例子去讲解的。32位的系统可访问的地址空间为4GB,用户空间为1GB ~ 3GB,内核空间为3GB ~ 4GB。

为什么要划分为用户空间和内核空间呢?

一般处理器会把运行模式分为好几个,比如x86分为rang0 ~ rang3级别。ARMv7架构中,又分为好几个模式,比如svc模式是给内核用的,usr模式是给用户态使用的。

当一个进程执行系统调用时,会陷入到内核态中,这个时候运行模式就从usr模式转换为svc模式,这就是我们常说的内核态。处于内核态的进程是可以访问内核空间的。所以就根据CPU的运行模式划分了两个空间。

我们先看下1GB的内核空间是怎么划分的,32位的系统中,通常配置的物理内存通常是大于1GB的,所以物理内存会划分为两部分,低端内存称为线性映射区,高端内存称为高端映射区。那这个分界线是怎么计算的呢,在ARM32中,分界线为760M。低端内存会做一比一映射到3GB ~ 3GB+760M。

这里讲的线性映射就是直接把物理内存的地址映射到线性映射区中,假设物理内存的DDR起始地址是0,映射的时候就有一个偏移量,这个偏移量就是0XC0000000,page offset。线性映射的地址我们就可以很方便的完成虚拟地址到物理地址的转换,只需要加减一个offset就可以。

高端内存的映射就没有线性映射那么简单了,使用高端内存时需要完成动态映射。

我们先看下1GB的内核空间剩下都做什么使用了。

  • vmalloc区域:分配的内存在虚拟地址是连续的,物理页面可以是离散的。vmalloc大概占用了200M物理内存。

  • fixmap:Fix map中的fix指的是固定的意思,那么固定什么东西呢?其实就是虚拟地址是固定的,也就是说,有些虚拟地址在编译(compile-time)的时候就固定下来了,而这些虚拟地址对应的物理地址不是固定的,是在kernel启动过程中被确定的。

  • vector:vector区域用于映射CPU vector page,大小一页4KB,从0xffff0000 - 0xffff1000。

接下来看下3GB用户空间的划分方式,一个进程要运行起来,必然要有自己的代码段和数据段,这部分在加载的时候就会被映射到虚拟地址。

  • 堆空间:从进程的开始到1GB的这部分我们称为堆空间,这部分主要是给malloc使用的。

  • mmap空间:1GB到3GB这部分是给mmap空间使用的,mmap可以用来映射文件也可以映射匿名页面。通常用户态分配大段内存的时候,Linux通常会使用mmap来完成分配。

从进程的角度看内存布局

readelf 查看程序段

接下来,我们通过一个C语言程序学习下内存布局,这个例子很简单,用malloc函数分配了内存内存,然后使用memset将该区域清零。

使用gcc编译为elf后,可以使用readelf 查看该程序包含那些段。

#include <stdio.h>
#include <string.h> 
#include <stdlib.h>

#define SIZE (100 * 1024)
void main()
{
    char* buf = malloc(SIZE);
    memset(buf, 0x58, SIZE);
    while(1)
        sleep(10000);
}
gcc -static  memory_process.c -o memory_process.elf

我们知道,通常Linux中流行的可执行文件的格式就是elf。使用gcc编译的elf就是我们讲的elf文件,目标文件除了包含了编译后的机器指令代码,还包含其他链接信息,比如符号表,调试信息,字符串等,通常这些信息会根据不同的属性存放在不同的段(section)中,这里我们只关注常见的段 。

  • .init:程序初始化的代码段。

  • .text:代码段,程序编译完后的机器指令。

  • .data:初始化过的全局的静态变量,还有一些局部的静态变量。

  • .rodata:只读变量,字符串,常量等。

  • .bss:未初始化的全局变量以及初始化为零的变量。

readelf 查看程序头

使用-l参数读下程序头(program header),它是用来描述OS是如何被映射到进程的虚拟地址空间的。

之前我们看到的30个段,在这里分成了7个族,并且显示每个族都包含那些段,这里我们只关注叫load的族,其他族主要是在程序装载的时候起到辅助作用。

第一个族里面包含init,text段,他的执行权限是只读,可执行的(RE)。起始地址0x0000000000400000,大小是0x00000000000b5986

另外一个族主要包含data和bss段,他的执行权限是可读写(RW)。起始地址0x00000000006b6120,大小是0x00000000000051b8

进程映射的过程

  1. 地址:本段在虚拟内存中的地址范围;对应vm_area_struct中的vm_startvm_end

  2. 权限:本段的权限; r-读,w-写,x-执行, p-私有;对应vm_flags。

  3. 偏移地址:即本段映射地址在文件中的偏移;对于有名映射指本段映射地址在文件中的偏移,对应vm_pgoff;对于匿名映射为vm_area_struct->vm_start

  4. 主设备号与次设备号:所映射的文件所属设备的设备号,对应vm_file->f_dentry->d_inode->i_sb->s_dev。匿名映射为0。其中fd为主设备号,00为次设备号。

  5. 文件索引节点号:对应vm_file->f_dentry->d_inode->i_ino,与ls –i显示的内容相符。匿名映射为0。

  6. 映射的文件名:对有名映射而言,是映射的文件名,对匿名映射来说,是此段内存在进程中的作用。[stack]表示本段内存作为栈来使用,[heap]作为堆来使用,其他情况则为无。

smaps 可以查看更多的内容

➜  example cat /proc/5823/smaps  
00400000-004b6000 r-xp 00000000 08:01 2319863                            /home/zhongyi/code/example/memory_process.elf
Size:                728 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB
Rss:                 640 kB
Pss:                 640 kB
Shared_Clean:          0 kB
Shared_Dirty:          0 kB
Private_Clean:       640 kB
Private_Dirty:         0 kB
Referenced:          640 kB
Anonymous:             0 kB
LazyFree:              0 kB
AnonHugePages:         0 kB
ShmemPmdMapped:        0 kB
FilePmdMapped:        0 kB
Shared_Hugetlb:        0 kB
Private_Hugetlb:       0 kB
Swap:                  0 kB
SwapPss:               0 kB
Locked:                0 kB
THPeligible:            0
VmFlags: rd ex mr mw me dw sd 
006b6000-006bc000 rw-p 000b6000 08:01 2319863                            /home/zhongyi/code/example/memory_process.elf
Size:                 24 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB
Rss:                  24 kB
Pss:                  24 kB
Shared_Clean:          0 kB
Shared_Dirty:          0 kB
Private_Clean:         8 kB
Private_Dirty:        16 kB
Referenced:           24 kB
Anonymous:            16 kB
LazyFree:              0 kB
AnonHugePages:         0 kB
ShmemPmdMapped:        0 kB
FilePmdMapped:        0 kB
Shared_Hugetlb:        0 kB
Private_Hugetlb:       0 kB
Swap:                  0 kB
SwapPss:               0 kB
Locked:                0 kB
THPeligible:            0
VmFlags: rd wr mr mw me dw ac sd 
006bc000-006bd000 rw-p 00000000 00:00 0 
Size:                  4 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB
Rss:                   4 kB
Pss:                   4 kB
Shared_Clean:          0 kB
Shared_Dirty:          0 kB
Private_Clean:         0 kB
Private_Dirty:         4 kB
Referenced:            4 kB
Anonymous:             4 kB
LazyFree:              0 kB
AnonHugePages:         0 kB
ShmemPmdMapped:        0 kB
FilePmdMapped:        0 kB
Shared_Hugetlb:        0 kB
Private_Hugetlb:       0 kB
Swap:                  0 kB
SwapPss:               0 kB
Locked:                0 kB
THPeligible:            0
VmFlags: rd wr mr mw me ac sd 
010cc000-010ef000 rw-p 00000000 00:00 0                                  [heap]
Size:                140 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB
Rss:                 108 kB
Pss:                 108 kB
Shared_Clean:          0 kB
Shared_Dirty:          0 kB
Private_Clean:         0 kB
Private_Dirty:       108 kB
Referenced:          108 kB
Anonymous:           108 kB
LazyFree:              0 kB
AnonHugePages:         0 kB
ShmemPmdMapped:        0 kB
FilePmdMapped:        0 kB
Shared_Hugetlb:        0 kB
Private_Hugetlb:       0 kB
Swap:                  0 kB
SwapPss:               0 kB
Locked:                0 kB
THPeligible:            0
VmFlags: rd wr mr mw me ac sd 
7ffd5e0db000-7ffd5e0fc000 rw-p 00000000 00:00 0                          [stack]
Size:                132 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB
Rss:                  16 kB
Pss:                  16 kB
Shared_Clean:          0 kB
Shared_Dirty:          0 kB
Private_Clean:         0 kB
Private_Dirty:        16 kB
Referenced:           16 kB
Anonymous:            16 kB
LazyFree:              0 kB
AnonHugePages:         0 kB
ShmemPmdMapped:        0 kB
FilePmdMapped:        0 kB
Shared_Hugetlb:        0 kB
Private_Hugetlb:       0 kB
Swap:                  0 kB
SwapPss:               0 kB
Locked:                0 kB
THPeligible:            0
VmFlags: rd wr mr mw me gd ac 
7ffd5e100000-7ffd5e103000 r--p 00000000 00:00 0                          [vvar]
Size:                 12 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB
Rss:                   0 kB
Pss:                   0 kB
Shared_Clean:          0 kB
Shared_Dirty:          0 kB
Private_Clean:         0 kB
Private_Dirty:         0 kB
Referenced:            0 kB
Anonymous:             0 kB
LazyFree:              0 kB
AnonHugePages:         0 kB
ShmemPmdMapped:        0 kB
FilePmdMapped:        0 kB
Shared_Hugetlb:        0 kB
Private_Hugetlb:       0 kB
Swap:                  0 kB
SwapPss:               0 kB
Locked:                0 kB
THPeligible:            0
VmFlags: rd mr pf io de dd sd 
7ffd5e103000-7ffd5e105000 r-xp 00000000 00:00 0                          [vdso]
Size:                  8 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB
Rss:                   4 kB
Pss:                   0 kB
Shared_Clean:          4 kB
Shared_Dirty:          0 kB
Private_Clean:         0 kB
Private_Dirty:         0 kB
Referenced:            4 kB
Anonymous:             0 kB
LazyFree:              0 kB
AnonHugePages:         0 kB
ShmemPmdMapped:        0 kB
FilePmdMapped:        0 kB
Shared_Hugetlb:        0 kB
Private_Hugetlb:       0 kB
Swap:                  0 kB
SwapPss:               0 kB
Locked:                0 kB
THPeligible:            0
VmFlags: rd ex mr mw me de sd 
ffffffffff600000-ffffffffff601000 --xp 00000000 00:00 0                  [vsyscall]
Size:                  4 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB
Rss:                   0 kB
Pss:                   0 kB
Shared_Clean:          0 kB
Shared_Dirty:          0 kB
Private_Clean:         0 kB
Private_Dirty:         0 kB
Referenced:            0 kB
Anonymous:             0 kB
LazyFree:              0 kB
AnonHugePages:         0 kB
ShmemPmdMapped:        0 kB
FilePmdMapped:        0 kB
Shared_Hugetlb:        0 kB
Private_Hugetlb:       0 kB
Swap:                  0 kB
SwapPss:               0 kB
Locked:                0 kB
THPeligible:            0
VmFlags: ex 

堆里面,匿名页面分配了108个物理内存,但我们的测试程序只分配了100k物理内存,这里匿名页面比分配的要大,这是因为进程在装载的时候也要消耗一些匿名页面。

010cc000-010ef000 rw-p 00000000 00:00 0                                  [heap]
Size:                140 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB
Rss:                 108 kB
Pss:                 108 kB
Shared_Clean:          0 kB
Shared_Dirty:          0 kB
Private_Clean:         0 kB
Private_Dirty:       108 kB
Referenced:          108 kB
Anonymous:           108 kB
LazyFree:              0 kB
AnonHugePages:         0 kB
ShmemPmdMapped:        0 kB
FilePmdMapped:        0 kB
Shared_Hugetlb:        0 kB
Private_Hugetlb:       0 kB
Swap:                  0 kB
SwapPss:               0 kB
Locked:                0 kB
THPeligible:            0
VmFlags: rd wr mr mw me ac sd 

根据以上信息,可以绘制出测试程序内存的布局图。

测试程序进程的elf这里只列出了常用的段。代码段的VMA属于page cache映射,这里把init段,text段,rodata段分为一个族,因为他们具有相同的权限,在进程加载的时候,会映射到代码段的VMA中。

数据段的VMA属于匿名映射,bss,data段具有相同的权限,在OS加载时,会映射到数据段的VMA中。

从数据段开始的地方就属于堆空间,我们在程序中用malloc分配了100K空间,这100K大小,也是在堆空间有对应的位置存在。

另外就是栈的VMA,进程有属于自己的VMA的栈。

以上就介绍了进程的ELF如何和进程的地址空间映射起来的。

64位系统的布局图

64位系统可以访问的空间就变得很大了。不过是ARM还是X86,实际的物理地址都不会用到64根地址线,通常是使用了48根地址线。而且,划分的用户空间和内核空间都是非常大的。

大家可以看这张图,把空间分为了三部分,一部分是内核空间,一部分是非规范区域(大家都不使用的),最后是用户空间。

  1. 用户空间:0x0000_0000_0000_0000到0x0000_ffff_ffff_ffff,一共有256TB。

  2. 非规范区域

  3. 内核空间:0xffff_0000_0000_0000到0xffff_ffff_ffff_ffff。一共有256TB。

内核空间又做了如下细分:

  • vmalloc区域:vmalloc函数使用的虚拟地址空间,kernel image也在vmalloc区域,内核镜像的起始地址 = KIMAGE_ADDR + TEXT_OFFSET, TEXT_OFFSET是内存中的内核镜像相对内存起始位置的偏移。

  • vmemmap区域:内存的物理地址如果不连续的话,就会存在内存空洞(稀疏内存),vmemmap就用来存放稀疏内存的page结构体的数据的虚拟地址空间。

  • PCI I/O区域:pci设备的I/O地址空间

  • Modules区域:内核模块使用的虚拟地址空间

  • normal memory线性映射区:范围是【0xffff_8000_0000_0000, 0xffff_ffff_ffff_ffff】, 一共有128TB, 但这里代码对应的是memblock_start_of_DRAM()memblock_end_of_DRAM()函数。
    memory根据实际物理内存大小做了限制,所以memroy显示了实际能够访问的内存区。

    MLM(__phys_to_virt(memblock_start_of_DRAM()), (unsigned long)high_memory))
    high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
    

    最终是通过dts或acpi中配置的memory节点确定的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1808217.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

FlashBrowser

本例&#xff1a;windows10 下载FlashBrowser 解决flash失效问题&#xff0c;更换浏览器 https://www.flash.cn/ 下载FlashBrowser浏览器

【Windows】UWP - Application Frame 窗口句柄溯源

目录 一、问题描述 二、解决方案 三、测试代码 参考文献 本文出处链接&#xff1a;[https://blog.csdn.net/qq_59075481/article/details/139574981]。 一、问题描述 当 GUI 线程的窗口属于 Windows/UWP 应用程序时&#xff0c;它们始终由进程 ApplicationFrameHost 托管…

使用DPO微调大模型Qwen2详解

简介 基于人类反馈的强化学习 (Reinforcement Learning from Human Feedback&#xff0c;RLHF) 事实上已成为 GPT-4 或 Claude 等 LLM 训练的最后一步&#xff0c;它可以确保语言模型的输出符合人类在闲聊或安全性等方面的期望。但传统的RLHF比较复杂&#xff0c;且还需要奖励…

【教学类-64-02】20240610色块眼力挑战(二)-2-25宫格色差10-100(10倍)(星火讯飞)

背景需求 以下的色块眼里挑战需要人工筛选图片&#xff0c;非常繁琐。 【教学类-64-01】20240607色块眼力挑战&#xff08;一&#xff09;-0-255随机底色-CSDN博客文章浏览阅读446次&#xff0c;点赞12次&#xff0c;收藏5次。【教学类-64-01】20240607色块眼力挑战&#xff…

web入门(1)---6.10

总结&#xff1a; 多做一点NSSCTF的新手赛&#xff0c;了解基本题型&#xff0c;然后打牢基础知识 谢队讲解 攻防世界 Web入门题 讲解_哔哩哔哩_bilibili 题目来源&#xff1a;攻防世界新手区 1.view_source 查看源代码 2.get_post 收获&#xff1a; get方法是直接在url…

攻防世界---misc---BotW-

1、下载附件是一张图片 2、查看图片属性&#xff0c;用winhex分析&#xff0c;没有发现奇怪的地方&#xff0c;用binwalk&#xff0c;接着使用foremost 3、得到两张图片&#xff0c;一张是原图&#xff0c;一张是特殊的字符 4、经过查阅资料得知&#xff0c;这是希卡文字&#…

数据中心基础设施智能运维

数据中心基础设施智能运维 随着科技的飞速发展&#xff0c;数据中心作为信息社会的核心基础设施&#xff0c;扮演着越来越重要的角色。然而&#xff0c;传统的运维模式由于对人力资源的高度依赖&#xff0c;已无法满足现代数据中心对高效、安全和可持续运维的要求。华为的《数…

IO流(转换流)

InputStreamReader&#xff08;字符输入转换流 &#xff09; 解决不同编码时&#xff0c;字符流读取文本内容乱码的问题 public static void main(String[] args) {try (//1.得到文件的原始字节流(GBK的字节流形式)FileInputStream is new FileInputStream("src/666.tx…

Objective-C的初始化方法中,应该如何读写属性

除非有明确的原因需要使用setter, getter, 否则总是应该直接访问, 也就是直接使用实例变量&#xff08;也称为 iVar&#xff09;来读写数据 理由&#xff1a; 避免子类覆盖setter方法的影响&#xff1a;若在初始化方法中使用setter方法, 使用此方法实例化子类, 可能会调用子类…

23.汽水兑奖

上海市计算机学会竞赛平台 | YACSYACS 是由上海市计算机学会于2019年发起的活动&#xff0c;旨在激发青少年对学习人工智能与算法设计的热情与兴趣&#xff0c;提升青少年科学素养&#xff0c;引导青少年投身创新发现和科研实践活动。https://www.iai.sh.cn/problem/106 题目描…

【Golang】Map 稳定有序遍历的实现与探索:保序遍历之道

【Golang】Map 稳定有序遍历的实现与探索&#xff1a;保序遍历之道 大家好 我是寸铁&#x1f44a; 总结了一篇【Golang】Map 稳定有序遍历的实现与探索&#xff1a;保序遍历之道✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 前言&#x1f34e; 在计算机科学中&#xff0c;数据结…

从零开始搭建Electron项目之运行例程

最好的学习方式就是&#xff1a;给一段能够运行的代码示例。 本文给出了例程资源&#xff0c;以及运行的步骤。 在国内开发electron有一点特别不好&#xff0c;就是如果不爬梯子&#xff0c;下载依赖容易出错。 一、例程资源 到如下路径下载例程到本地。 GitCode - 全球开发者…

新技术前沿-2023-大模型的本质

大模型时代需要什么样的人才&#xff1f; 1 大模型的本质 特斯拉前AI总监Andrej Karpathy的新教程&#xff0c;涵盖模型推理、训练、微调和新兴大模型操作系统以及安全挑战。 1.1 大模型本质就是两个文件 首先&#xff0c;大模型是什么&#xff1f; 大模型本质就是两个文件…

转型AI产品经理(7):“格式塔原则”如何应用在Chatbot产品中

格式塔原则&#xff0c;又称为完形原则&#xff0c;它是一组关于人类如何感知视觉元素的心理学理论&#xff0c;这些原则说明了大脑如何将分散的视觉元素整合为有意义的整体&#xff0c;即使这些元素本身可能是分离的&#xff0c;帮助我们理解人们如何组织和解释复杂的视觉信息…

C++网络编程基础

文章目录 协议局域网通信IP 地址网络通信的本质tcp 和 udp 协议网络字节序网络主机数据转化接口 协议 协议&#xff1a;收到数据后&#xff0c;多出来的那一部分&#xff0c;也叫一种 “约定”&#xff0c;一整套的自硬件到软件&#xff0c;都有协议&#xff0c;需要有人定制&a…

KUKA机器人KRC5控制柜面板LED显示

对于KUKA机器人新系列控制柜KRC5控制柜来说&#xff0c;其控制柜面板LED布局如下图&#xff1a; 其中①②③④分别为&#xff1a; 1、机器人控制柜处于不同状态时&#xff0c;LED显示如下&#xff1a; 2、机器人控制柜正在运行时&#xff1a; 3、机器人控制柜运行时出现的故障…

金融数据中心能力建设指引

金融数据中心能力建设指引 金融数据中心能力建设指引旨在通过高标准的基础设施建设、完善的数据管理、强大的信息安全防护和业务连续性规划&#xff0c;确保数据中心具备高效、安全、可靠的运行能力&#xff0c;支持金融业务的稳定发展。该指引强调技术创新、标准化管理、人才…

迅为RK3562开发板ARM四核A53核心板瑞芯微国产人工智能Linux安卓

iTOP-3562开发板采用瑞芯微RK3562处理器&#xff0c;内部集成了四核A53Mali G52架构&#xff0c;主频2GHZ&#xff0c;内置1TOPSNPU算力&#xff0c;RK809动态调频。支持OpenGLES1.1/2.0/3.2、0penCL2.0、Vulkan 1.1内嵌高性能2D加速硬件。 内置独立NPU, 算力达 1TOPS,可用于轻…

搭建RocketMQ主从异步集群

搭建RocketMQ主从异步集群 1、RocketMQ集群模式 为了追求更好的性能&#xff0c;RocketMQ的最佳实践方式都是在集群模式下完成的。RocketMQ官方提供了三种集群搭建方式&#xff1a; 2主2从异步通信方式&#xff1a;使用异步方式进行主从之间的数据复制。吞吐量大&#xff0c;…