【C语言】轻松拿捏-联合体

news2024/12/23 12:36:13

谢谢观看!希望以下内容帮助到了你,对你起到作用的话,可以一键三连加关注!你们的支持是我更新地动力。
因作者水平有限,有错误还请指出,多多包涵,谢谢!


联合体

  • 一、联合体类型的声明
  • 二、联合体的特点
  • 三、联合体大小的计算
  • 四、联合的一个练习

一、联合体类型的声明

  
在这里插入图片描述

//联合体的关键字:union
//结构体的关键字:struct
//枚举的关键:enum

struct s
{
	char c;//0
	//1~3 浪费了
	int i;//4~7
};

union un//联合体的声明
{
	char c;
	int i;
};

int main()
{
	printf("%zd\n", sizeof(struct s));//8
	printf("%zd\n", sizeof(union un));//4

	return 0;
}

  


二、联合体的特点

  
  联合体的特点:联合的成员是共用同一块内存空间的,这样一个联合变量的大小至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员),但不一定等于最大成员的大小
  
在这里插入图片描述
  虽然我们知道了它们是同一个起始地址,但是该如何具体的看到内存的变化呢?其实我们可以通过调试窗口观察

//代码2
#include <stdio.h>
//联合类型的声明
union Un
{
 char c;
 int i;
};
int main()
{
 //联合变量的定义
 union Un un = {0};
 un.i = 0x11223344;
 un.c = 0x55;
 printf("%x\n", un.i);
 return 0;
}

  变化之前
  
在这里插入图片描述
  变化之后
  
在这里插入图片描述
  
  通过上面的代码比较可以看出:联合的成员是共用同一块内存空间的
  


三、联合体大小的计算

  
联合体大小计算规则

  • 联合的大小至少是最大成员的大小。
  • 当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍
union Un
{
	short arr[7];//14    2 8 2
	//将数组拆开相当于有7个short的数据
	int i;//4            4 8 4
	//所以实际最大对齐数是4,那么联合体的整体大小是实际最大对齐数的整数倍
	//14不是,16是,那么浪费了2个字节
};

int main()
{
	printf("%d\n", sizeof(union Un));//结果是16

	return 0;
}

四、联合的一个练习

  写⼀个程序,判断当前机器是大端?还是小端?

int check_sys()
{
    union
    {
        int i;
        char c;
    }un;
    un.i = 1;
    return un.c;//返回1是⼩端,返回0是⼤端
}

int main()
{
    check_sys();
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1806725.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Python】一文向您详细介绍 `__dict__` 的作用和用法

【Python】一文向您详细介绍 __dict__ 的作用和用法 下滑即可查看博客内容 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地&#xff01;&#x1f387; &#x1f393; 博主简介&#xff1a;985高校的普通本硕…

20240606更新Toybrick的TB-RK3588开发板在Android12下的内核

20240606更新Toybrick的TB-RK3588开发板在Android12下的内核 2024/6/6 10:51 0、整体编译&#xff1a; 1、cat android12-rk-outside.tar.gz* | tar -xzv 2、cd android12 3、. build/envsetup.sh 4、lunch rk3588_s-userdebug 5、./build.sh -AUCKu -d rk3588-toybrick-x0-a…

【代码随想录】【算法训练营】【第32天】 [122]买卖股票的最佳时机II [376]摆动序列 [53]最大子序和

前言 思路及算法思维&#xff0c;指路 代码随想录。 题目来自 LeetCode。 day 32&#xff0c;一个不上班的周六&#xff0c;坚持一了一点~ 题目详情 [122] 买卖股票的最佳时机II 题目描述 122 买卖股票的最佳时机II 解题思路 前提&#xff1a;单链表 删除元素 思路&a…

【RAG入门教程02】Langchian的Embedding介绍与使用

Embedding介绍 词向量是 NLP 中的一种表示形式&#xff0c;其中词汇表中的单词或短语被映射到实数向量。它们用于捕获高维空间中单词之间的语义和句法相似性。 在词嵌入的背景下&#xff0c;我们可以将单词表示为高维空间中的向量&#xff0c;其中每个维度对应一个特定的特征…

279 基于matlab的粒子群集法对铁路电能质量控制系统的容量避行优化设计

基于matlab的粒子群集法对铁路电能质量控制系统的容量避行优化设计。计算出满足功率因素、电压不平衡度等电能指标的条件下。RPC所需要的补偿功率。求得所需最小的系统客量。该设计能快速计算出符合系统设定指标的各项最优补偿功率。并通过sumulink份真。检验设计参数的准确性。…

YOLOv10 超详细解析 | 网络结构、训练策略、论文解读

网络结构 1. Backbone 2. Head 3. 说明 网络结构按 YOLOv10m 绘制&#xff0c;不同 scale 的模型在结构上略有不同&#xff0c;而不是像 YOLOv8 一样仅调整 depth 和 width。Head 有部分后续计算与 YOLOv8 完全相同&#xff0c;上图省略&#xff0c;具体请看此文。YOLOv10 整…

文心一言 VS 讯飞星火 VS chatgpt (277)-- 算法导论20.3 4题

四、如果调用 vEB-TREE-INSERT 来插入一个已包含在 vEB 树中的元素&#xff0c;会出现什么情况&#xff1f;如果调用 vEB-TREE-DELETE 来删除一个不包含在 vEB 树中的元素&#xff0c;会出现什么情况&#xff1f;解释这些函数为什么有相应的运行状况&#xff1f;怎样修改 vEB 树…

【Git】详解本地仓库的创建、配置以及工作区、暂存区、版本库的认识

一、创建本地仓库 需要将本地仓库放在一个目录下&#xff0c;所以在创建本地仓库之前&#xff0c;应该先创建一个目录&#xff0c;再进入这个目录&#xff1a; 在这个目录中创建一个本地仓库&#xff1a; git init 创建完成后&#xff0c;我们就会发现当前目录下多了一个.git…

ApsaraMQ Copilot for RocketMQ:消息数据集成链路的健康管家

作者&#xff1a;文婷 引言 如何正确使用消息队列保证业务集成链路的稳定性&#xff0c;是消息队列用户首要关心的问题。ApsaraMQ Copilot for RocketMQ 从集成业务稳定性、成本、性能等方面帮助用户更高效地使用产品。 背景 消息队列产品通过异步消息的传递&#xff0c;来…

用Kimi开发部署上线一个完整的Web网页应用

首先问Kimi&#xff1a;我想写一个网页版的计算器应用&#xff0c;如何做项目规划&#xff1f; 根据kimi的回答&#xff0c;选择前端开发技术HTML、CSS、JavaScript&#xff0c;使用HTML和CSS构建基础结构和样式&#xff0c;使用JavaScript添加交互性&#xff0c;实现计算器的核…

Pytorch 实现目标检测二(Pytorch 24)

一 实例操作目标检测 下面通过一个具体的例子来说明锚框标签。我们已经为加载图像中的狗和猫定义了真实边界框&#xff0c;其中第一个 元素是类别&#xff08;0代表狗&#xff0c;1代表猫&#xff09;&#xff0c;其余四个元素是左上角和右下角的(x, y)轴坐标&#xff08;范围…

嵌入式仪器模块:音频综测仪和自动化测试软件

• 24 位分辨率 • 192 KHz 采样率 • 支持多种模拟/数字音频信号的输入/输出 应用场景 • 音频信号分析&#xff1a;幅值、频率、占空比、THD、THDN 等指标 • 模拟音频测试&#xff1a;耳机、麦克风、扬声器测试&#xff0c;串扰测试 • 数字音频测试&#xff1a;平板电…

C++笔试强训day42

目录 1.最大差值 2.兑换零钱 3.小红的子串 1.最大差值 链接https://www.nowcoder.com/practice/a01abbdc52ba4d5f8777fb5dae91b204?tpId182&tqId34396&rp1&ru/exam/company&qru/exam/company&sourceUrl%2Fexam%2Fcompany&difficulty2&judgeSta…

非线性模型预测控制NMPC例子

NMPC概述 非线性模型预测控制(Nonlinear Model Predictive Control, NMPC)是一种用于控制非线性系统的高级控制策略。与线性MPC不同,NMPC需要处理系统的非线性特性,这使得优化问题更加复杂。NMPC通常使用迭代优化算法来求解非线性优化问题 NMPC基本原理 NMPC的目标是最小…

Diffusers代码学习: T2I Adapter

T2I Adapter是一款轻量级适配器&#xff0c;用于控制文本到图像模型并为其提供更准确的结构指导。它通过学习文本到图像模型的内部知识与外部控制信号&#xff08;如边缘检测或深度估计&#xff09;之间的对齐来工作。 T2I Adapter的设计很简单&#xff0c;条件被传递到四个特征…

[Cloud Networking] Layer 2 Protocol

文章目录 1. STP / RSTP / MSTP Protocol1.1 STP的作用1.2 STP 生成树算法的三个步骤1.3 STP缺点 2. ARP Protocol3. DHCP Protocol3.1 DHCP 三种分配方式3.2 DHCP Relay (中继) 4. MACSEC 1. STP / RSTP / MSTP Protocol 1.1 STP的作用 消除二层环路&#xff1a;通过阻断冗余…

牛客 NC129 阶乘末尾0的数量【简单 基础数学 Java/Go/PHP/C++】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/aa03dff18376454c9d2e359163bf44b8 https://www.lintcode.com/problem/2 思路 Java代码 import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定&#xff0c;请勿修改&#xff…

SpringBoot之Mybatis-plus实战

文章目录 MybatisPlus 介绍一、MyBatisPlus 集成步骤第一步、引入依赖第二步、定义mapper 二、注解TableNameTableldTableField 加解密实现步骤 在SpringBoot项目中使用Mybatis-plus&#xff0c;记录下来&#xff0c;方便备查。 MybatisPlus 介绍 为简化开发而生&#xff0c;官…

【源码】Spring Data JPA原理解析之事务注册原理

Spring Data JPA系列 1、SpringBoot集成JPA及基本使用 2、Spring Data JPA Criteria查询、部分字段查询 3、Spring Data JPA数据批量插入、批量更新真的用对了吗 4、Spring Data JPA的一对一、LazyInitializationException异常、一对多、多对多操作 5、Spring Data JPA自定…