【深度学习】温故而知新4-手写体识别-多层感知机+CNN网络-完整代码-可运行

news2025/1/9 15:22:01

多层感知机版本

import torch
import torch.nn as nn
import numpy as np
import torch.utils
from torch.utils.data import DataLoader, Dataset
import torchvision
from torchvision import transforms
import matplotlib.pyplot as plt
import matplotlib
import os
# 前置配置:
matplotlib.use('Agg')
class Config():
    base_dir = os.path.dirname(os.path.abspath(__file__))
    device = "cuda" if torch.cuda.is_available() else "cpu"
    # 超参配置: 
    batch_size=128
    lr=0.0001
# 数据集初步加工
train_ds = torchvision.datasets.MNIST(os.path.join(Config.base_dir,"data"),train=True,download=False,transform=transforms.ToTensor())
test_ds = torchvision.datasets.MNIST(os.path.join(Config.base_dir,"data"),train=False,download=False,transform=transforms.ToTensor())
# 生成dataLoader
train_dl = DataLoader(train_ds,batch_size=Config.batch_size,shuffle=True)
test_dl = DataLoader(test_ds,batch_size=Config.batch_size)

def show_pic_and_label():
    # 查看dataloader
    print(len(train_dl.dataset))
    # 查看 它的img 和 label
    imgs, labels = next(iter(train_dl))
    # print(imgs, labels)
    sample_img = imgs[0:10]
    sample_label = labels[0:10]
    print(sample_img,sample_label)
    for idx,npimg in enumerate(sample_img,1):
        # plt.subplot()
        # 也可以挤一挤
        npimg = npimg.squeeze()
        # npimg = npimg.reshape(28,28)
        plt.subplot(1,10,idx)
        plt.imshow(npimg)
        plt.axis('off')
    plt.savefig(os.path.join(Config.base_dir,"1.jpg"))
    print(sample_label)
# 构建模型 
class Model(nn.Module):
    def __init__(self):
        super().__init__()
        # 第一层 28*28, 120
        self.liner1 = nn.Linear(28*28,120)
        # 第二层 输出84
        self.liner2 = nn.Linear(120, 84)
        # 第三层 输出10
        self.liner3 = nn.Linear(84,10)
    def forward(self, input):
        x = input.view(-1,28*28)
        # @todo 这里踩坑了,不是nn.ReLU, 而是torch.ReLu
        x = torch.relu(self.liner1(x))
        x = torch.relu(self.liner2(x))
        x = self.liner3(x)
        return x

model = Model().to(Config.device)
# print(model)
optim = torch.optim.Adam(model.parameters(), lr = Config.lr)

loss_fn = nn.CrossEntropyLoss()

def model_test():
    """
    确认输入输出是没问题的。
    """
    res = model(torch.randn(10,28*28).to(Config.device))
    print(res.shape)
    print(res)
def accuracy(y_pred,y_true):
    y_pred = (torch.argmax(y_pred,dim=1) == y_true).type(torch.int64)
    return y_pred.sum()
# 编写训练过程
def train(dataloader, model, loss_fn, optimizer):
    total_row_count = len(dataloader.dataset)
    total_batch_count = len(dataloader)
    total_acc = 0
    total_loss = 0
    for X,y in dataloader:
        X,y = X.to(Config.device),y.to(Config.device)
        y_pred = model(X)
        acc = accuracy(y_pred,y)
        loss = loss_fn(y_pred,y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        with torch.no_grad():
            total_acc+=acc
            total_loss+=loss
    total_acc = total_acc/total_row_count
    total_loss = total_loss/total_batch_count
    return total_loss, total_acc

# 编写测试过程
def test(dataloader, model, loss_fn):
    total_row_count = len(dataloader.dataset)
    total_batch_count = len(dataloader)
    total_acc = 0
    total_loss = 0
    with torch.no_grad():
        for X,y in dataloader:
            X,y = X.to(Config.device),y.to(Config.device)
            y_pred = model(X)
            acc = accuracy(y_pred,y)
            loss = loss_fn(y_pred,y)
            total_acc+=acc
            total_loss+=loss
    total_acc = total_acc/total_row_count
    total_loss = total_loss/total_batch_count
    return total_loss, total_acc

epochs = 50
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
    epoch_loss, epoch_acc = train(train_dl,model,loss_fn,optim)
    epoch_test_loss, epoch_test_acc = test(test_dl,model,loss_fn)
    template = "epoch:{:2d}, train_loss:{:.5f}, train_acc:{:.1f}%, test_loss:{:.5f},test_acc:{:.1f}%"
    print(template.format(epoch, epoch_loss.data.item(), epoch_acc.data.item()*100, epoch_test_loss.data.item(), epoch_test_acc.data.item()*100))
    #print(epoch, epoch_loss.data.item(),epoch_acc.data.item(),epoch_test_loss.data.item(),epoch_test_acc.data.item())
if __name__ == "__main__":
    # model_test()
    pass
    # y_pred = torch.tensor([
    #     [1,2,3],
    #     [2,1,3],
    #     [3,2,1],
    #     ])
    # y_true = torch.tensor([2,0,1])
    
    # res = accuracy(y_pred,y_true)
    # print(res)
(pytorchbook) (base) justin@justin-System-Product-Name:~/Desktop/code/python_project/mypaper$ /home/justin/miniconda3/envs/pytorchbook/bin/python /home/justin/Desktop/code/python_project/mypaper/pytorchbook/chapter4/手写体识别.py
epoch: 0, train_loss:1.17435, train_acc:70.1%, test_loss:0.47829,test_acc:88.7%
epoch: 1, train_loss:0.39913, train_acc:89.5%, test_loss:0.33029,test_acc:91.0%
epoch: 2, train_loss:0.31837, train_acc:91.1%, test_loss:0.28821,test_acc:91.8%
epoch: 3, train_loss:0.28331, train_acc:92.0%, test_loss:0.26157,test_acc:92.5%
epoch: 4, train_loss:0.26049, train_acc:92.5%, test_loss:0.24704,test_acc:93.1%
epoch: 5, train_loss:0.24122, train_acc:93.1%, test_loss:0.22766,test_acc:93.4%
epoch: 6, train_loss:0.22516, train_acc:93.6%, test_loss:0.21446,test_acc:93.7%
epoch: 7, train_loss:0.21048, train_acc:94.0%, test_loss:0.20211,test_acc:94.2%
epoch: 8, train_loss:0.19786, train_acc:94.4%, test_loss:0.19200,test_acc:94.5%
epoch: 9, train_loss:0.18692, train_acc:94.6%, test_loss:0.18458,test_acc:94.7%
epoch:10, train_loss:0.17689, train_acc:95.0%, test_loss:0.17440,test_acc:94.9%
epoch:11, train_loss:0.16766, train_acc:95.2%, test_loss:0.16584,test_acc:95.0%
epoch:12, train_loss:0.15932, train_acc:95.5%, test_loss:0.16011,test_acc:95.3%
epoch:13, train_loss:0.15149, train_acc:95.7%, test_loss:0.15269,test_acc:95.5%
epoch:14, train_loss:0.14443, train_acc:95.9%, test_loss:0.14685,test_acc:95.5%
epoch:15, train_loss:0.13801, train_acc:96.0%, test_loss:0.14179,test_acc:95.7%
epoch:16, train_loss:0.13172, train_acc:96.2%, test_loss:0.13724,test_acc:95.8%
epoch:17, train_loss:0.12594, train_acc:96.3%, test_loss:0.13256,test_acc:96.1%
epoch:18, train_loss:0.12016, train_acc:96.5%, test_loss:0.13012,test_acc:96.1%
epoch:19, train_loss:0.11557, train_acc:96.7%, test_loss:0.12416,test_acc:96.2%
epoch:20, train_loss:0.11037, train_acc:96.8%, test_loss:0.12220,test_acc:96.4%
epoch:21, train_loss:0.10601, train_acc:97.0%, test_loss:0.11851,test_acc:96.5%
epoch:22, train_loss:0.10160, train_acc:97.1%, test_loss:0.11445,test_acc:96.6%
epoch:23, train_loss:0.09774, train_acc:97.2%, test_loss:0.11242,test_acc:96.5%
epoch:24, train_loss:0.09388, train_acc:97.3%, test_loss:0.10876,test_acc:96.6%
epoch:25, train_loss:0.09008, train_acc:97.4%, test_loss:0.10713,test_acc:96.7%
epoch:26, train_loss:0.08692, train_acc:97.5%, test_loss:0.10526,test_acc:96.7%
epoch:27, train_loss:0.08370, train_acc:97.6%, test_loss:0.10490,test_acc:96.8%
epoch:28, train_loss:0.08067, train_acc:97.7%, test_loss:0.10183,test_acc:96.8%
epoch:29, train_loss:0.07805, train_acc:97.7%, test_loss:0.10172,test_acc:96.9%
epoch:30, train_loss:0.07480, train_acc:97.8%, test_loss:0.09779,test_acc:97.0%
epoch:31, train_loss:0.07235, train_acc:97.8%, test_loss:0.09650,test_acc:97.0%
epoch:32, train_loss:0.06958, train_acc:98.0%, test_loss:0.09472,test_acc:97.1%
epoch:33, train_loss:0.06747, train_acc:98.0%, test_loss:0.09349,test_acc:97.1%
epoch:34, train_loss:0.06504, train_acc:98.1%, test_loss:0.09270,test_acc:97.1%
epoch:35, train_loss:0.06236, train_acc:98.2%, test_loss:0.09221,test_acc:97.2%
epoch:36, train_loss:0.06039, train_acc:98.3%, test_loss:0.09187,test_acc:97.2%
epoch:37, train_loss:0.05850, train_acc:98.3%, test_loss:0.08917,test_acc:97.3%
epoch:38, train_loss:0.05624, train_acc:98.4%, test_loss:0.08657,test_acc:97.3%
epoch:39, train_loss:0.05456, train_acc:98.4%, test_loss:0.08722,test_acc:97.4%
epoch:40, train_loss:0.05246, train_acc:98.5%, test_loss:0.08660,test_acc:97.4%
epoch:41, train_loss:0.05088, train_acc:98.5%, test_loss:0.08511,test_acc:97.4%
epoch:42, train_loss:0.04919, train_acc:98.6%, test_loss:0.08628,test_acc:97.4%
epoch:43, train_loss:0.04726, train_acc:98.7%, test_loss:0.08620,test_acc:97.4%
epoch:44, train_loss:0.04571, train_acc:98.7%, test_loss:0.08298,test_acc:97.5%
epoch:45, train_loss:0.04408, train_acc:98.8%, test_loss:0.08309,test_acc:97.5%
epoch:46, train_loss:0.04274, train_acc:98.8%, test_loss:0.08241,test_acc:97.5%
epoch:47, train_loss:0.04122, train_acc:98.9%, test_loss:0.08229,test_acc:97.6%
epoch:48, train_loss:0.03967, train_acc:98.9%, test_loss:0.08120,test_acc:97.6%
epoch:49, train_loss:0.03829, train_acc:99.0%, test_loss:0.08134,test_acc:97.5%

问题1:
epoch: 0, train_loss:1.17435, train_acc:70.1%, test_loss:0.47829,test_acc:88.7%
为什么第一轮训练train_acc要比test_acc掉点不少,是因为第一轮,是刚开始,train按批次比完了,才会到test。因此test是高
那么为什么其它轮,又是test比train低呢?
因为即使train是按批次的,但仍然有可能过拟合,契合的好。所以test是比不过的。

在这里插入图片描述
在这里插入图片描述

CNN版本

只需要将model换一下,其它的毛也不需要动

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5) # 1X28X28 --> 6X24X24 # 池化 6X12X12
        self.conv2 = nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5) # 6X12X12--> 16X8X8
        # 池化 16X4X4 
        self.liner_1 = nn.Linear(16*4*4,256)
        self.liner_2 = nn.Linear(256,10)
    
    def forward(self,input):
        x = torch.max_pool2d(torch.relu(self.conv1(input)),2)
        x = torch.max_pool2d(torch.relu(self.conv2(x)),2)
        # 展平层
        x = x.view(-1, 16*4*4)
        x = torch.relu(self.liner_1(x))
        x = self.liner_2(x)
        return x

# 这里是在学习一种调试的方式
class _Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
    
    def forward(self, input):
        a1 = self.conv1(input)
        a2 = F.max_pool2d(a1,2)
        a3 = self.conv2(a2)
        a4 = F.max_pool2d(a3,2)
        # print()
epoch: 0, train_loss:1.13144, train_acc:74.3%, test_loss:0.36698,test_acc:90.6%
epoch: 1, train_loss:0.30213, train_acc:91.6%, test_loss:0.22672,test_acc:93.5%
epoch: 2, train_loss:0.21874, train_acc:93.7%, test_loss:0.17848,test_acc:94.9%
epoch: 3, train_loss:0.17849, train_acc:94.8%, test_loss:0.14941,test_acc:95.4%
epoch: 4, train_loss:0.15203, train_acc:95.5%, test_loss:0.12645,test_acc:96.2%
epoch: 5, train_loss:0.13339, train_acc:96.1%, test_loss:0.11351,test_acc:96.5%
epoch: 6, train_loss:0.11952, train_acc:96.5%, test_loss:0.09954,test_acc:96.9%
epoch: 7, train_loss:0.10876, train_acc:96.7%, test_loss:0.09198,test_acc:97.3%
epoch: 8, train_loss:0.09943, train_acc:97.1%, test_loss:0.08412,test_acc:97.3%
epoch: 9, train_loss:0.09255, train_acc:97.2%, test_loss:0.07788,test_acc:97.6%
epoch:10, train_loss:0.08576, train_acc:97.4%, test_loss:0.07551,test_acc:97.6%
epoch:11, train_loss:0.08089, train_acc:97.5%, test_loss:0.06757,test_acc:97.9%
epoch:12, train_loss:0.07635, train_acc:97.7%, test_loss:0.06399,test_acc:98.0%
epoch:13, train_loss:0.07175, train_acc:97.8%, test_loss:0.05942,test_acc:98.1%
epoch:14, train_loss:0.06862, train_acc:97.9%, test_loss:0.05657,test_acc:98.2%
epoch:15, train_loss:0.06509, train_acc:98.0%, test_loss:0.05776,test_acc:98.1%
epoch:16, train_loss:0.06273, train_acc:98.1%, test_loss:0.05381,test_acc:98.3%
epoch:17, train_loss:0.05940, train_acc:98.2%, test_loss:0.05134,test_acc:98.4%
epoch:18, train_loss:0.05681, train_acc:98.3%, test_loss:0.05330,test_acc:98.2%
epoch:19, train_loss:0.05434, train_acc:98.4%, test_loss:0.04689,test_acc:98.6%
epoch:20, train_loss:0.05175, train_acc:98.5%, test_loss:0.04500,test_acc:98.6%
epoch:21, train_loss:0.05027, train_acc:98.6%, test_loss:0.04645,test_acc:98.5%
epoch:22, train_loss:0.04849, train_acc:98.6%, test_loss:0.04274,test_acc:98.7%
epoch:23, train_loss:0.04600, train_acc:98.6%, test_loss:0.04739,test_acc:98.5%
epoch:24, train_loss:0.04449, train_acc:98.7%, test_loss:0.04360,test_acc:98.7%
epoch:25, train_loss:0.04359, train_acc:98.7%, test_loss:0.04198,test_acc:98.7%
epoch:26, train_loss:0.04115, train_acc:98.8%, test_loss:0.04209,test_acc:98.7%
epoch:27, train_loss:0.03978, train_acc:98.8%, test_loss:0.04147,test_acc:98.7%
epoch:28, train_loss:0.03866, train_acc:98.9%, test_loss:0.03845,test_acc:98.8%
epoch:29, train_loss:0.03721, train_acc:98.9%, test_loss:0.04142,test_acc:98.7%
epoch:30, train_loss:0.03632, train_acc:98.9%, test_loss:0.03916,test_acc:98.8%
epoch:31, train_loss:0.03525, train_acc:98.9%, test_loss:0.04137,test_acc:98.7%
epoch:32, train_loss:0.03364, train_acc:99.0%, test_loss:0.03829,test_acc:98.8%
epoch:33, train_loss:0.03323, train_acc:99.0%, test_loss:0.04090,test_acc:98.7%
epoch:34, train_loss:0.03179, train_acc:99.0%, test_loss:0.03660,test_acc:98.9%
epoch:35, train_loss:0.03125, train_acc:99.1%, test_loss:0.03698,test_acc:98.9%
epoch:36, train_loss:0.03009, train_acc:99.1%, test_loss:0.03624,test_acc:98.8%
epoch:37, train_loss:0.02958, train_acc:99.1%, test_loss:0.03525,test_acc:98.9%
epoch:38, train_loss:0.02902, train_acc:99.1%, test_loss:0.03705,test_acc:98.9%
epoch:39, train_loss:0.02789, train_acc:99.2%, test_loss:0.03579,test_acc:98.9%
epoch:40, train_loss:0.02741, train_acc:99.2%, test_loss:0.03896,test_acc:98.9%
epoch:41, train_loss:0.02604, train_acc:99.2%, test_loss:0.03572,test_acc:98.9%
epoch:42, train_loss:0.02518, train_acc:99.2%, test_loss:0.03741,test_acc:98.7%
epoch:43, train_loss:0.02471, train_acc:99.3%, test_loss:0.03319,test_acc:98.9%
epoch:44, train_loss:0.02413, train_acc:99.3%, test_loss:0.03753,test_acc:98.8%
epoch:45, train_loss:0.02340, train_acc:99.3%, test_loss:0.03333,test_acc:98.9%
epoch:46, train_loss:0.02272, train_acc:99.3%, test_loss:0.03303,test_acc:99.0%
epoch:47, train_loss:0.02188, train_acc:99.3%, test_loss:0.03451,test_acc:98.9%
epoch:48, train_loss:0.02169, train_acc:99.4%, test_loss:0.03433,test_acc:98.9%
epoch:49, train_loss:0.02068, train_acc:99.4%, test_loss:0.03331,test_acc:98.9%

对比一下 cnn的到了98.9,而mlp的只有97.x

函数式API的调用方式

import torch.nn.functional as F
# 这里是在学习一种调试的方式
class _Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
    
    def forward(self, input):
        a1 = self.conv1(input)
        a2 = F.max_pool2d(a1,2)
        a3 = self.conv2(a2)
        a4 = F.max_pool2d(a3,2)
        # print()

class Model1(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5) # 1X28X28 --> 6X24X24 # 池化 6X12X12
        self.conv2 = nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5) # 6X12X12--> 16X8X8
        # 池化 16X4X4 
        self.liner_1 = nn.Linear(16*4*4,256)
        self.liner_2 = nn.Linear(256,10)
    
    def forward(self,input):
        x = F.max_pool2d(F.relu(self.conv1(input)),2)
        x = F.max_pool2d(F.relu(self.conv2(x)),2)
        # 展平层
        x = x.view(-1, 16*4*4)
        x = F.relu(self.liner_1(x))
        x = self.liner_2(x)
        return x   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1806092.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot+Vue学科竞赛系统(前后端分离)

技术栈 JavaSpringBootMavenMySQLMyBatisVueShiroElement-UI 角色对应功能 学生教师管理员 功能截图

IO流字符流(FileReader与FileWriter)

目录 FileReader 空参read方法 带参read方法👇 FileWriter void write(intc) 写出一个字符 void write(string str) 写出一个字符串 void write(string str,int off,int len) 写出一个字符串的一部分 void write(char[] cbuf) …

如何学习Golang语言!

第一部分:Go语言概述 起源与设计哲学:Go语言由Robert Griesemer、Rob Pike和Ken Thompson三位Google工程师设计,旨在解决现代编程中的一些常见问题,如编译速度、运行效率和并发编程。主要特点:Go语言的语法简单、编译…

Bootstrap框架集成ECharts教程

最新公司项目要在原有的基础上增加一些饼状图和柱状图来统计一些数据给客户,下面就是集成的一个过程,还是很简单的,分为以下几步 1、引入ECharts的包 2、通过ECharts官网或者菜鸟教程直接拿示例代码过来修修改改直接用就可以了 注意&#xf…

三维地图Cesium,加载一个模型,模型沿着给定的一组经纬度路线移动

目录 实现效果 实现思路 功能点 选择移动路线 加载模型和移动路线 重新运行 指定位置(经纬度点)开始移动 视角切换 到站提示 运行 停止 联动接口 完整代码 html js逻辑 trainOperation.js sourceData.js gitee仓库项目代码 疑问解答 实现效果 三维地图Cesiu…

pyqt QlineEdit内部增加按钮方法

按钮放在QlineEdit内部,界面更紧凑,体现了按钮和文本框的强关联。 def addButton(self,lineEdit):btn QtWidgets.QPushButton("")icon1 QtGui.QIcon()icon1.addPixmap(QtGui.QPixmap(":/image/images/th.png"), QtGui.QIcon.Norm…

C++【STL】改造红黑树简单模拟实现set map(带你了解set map的底层实现结构)

目录 一、学前铺垫(泛型编程) 二、改造红黑树 1.红黑树节点的改造 2.insert的改造 3.迭代器的实现 4.完整改造代码 三、set的模拟实现封装 四、map的模拟实现封装 五、完结撒❀ 前言: 下面为了简单模拟实现set map所出现的代码是以…

【JsDoc】JsDoc用法 | 巧妙用法

type type {other} other 接收表达式或字符 1、数组代码提示 1、效果图 1、码 /*** type {Array.<play|paush|next>} */ let music []2、字符串提示 2、效果图 2、码 /*** type {a|b|c}*/ let str

minio的一个基础使用案例:用户头像上传

文章目录 一、minio下载安装&#xff08;Windows&#xff09;二、案例需求分析三、后端接口开发 一、minio下载安装&#xff08;Windows&#xff09; 1. 下载minio服务端和客户端 minio下载地址 2. 手动搭建目录 /minio/binmc.exeminio.exe/data/logs手动创建minio应用程序目…

Linux入门学习(2)

1.相关复习新的指令学习 &#xff08;1&#xff09;我们需要自己创建一个用户&#xff0c;这个用户前期可以是一个root用户&#xff0c;后期使用创建的普通用户 &#xff08;2&#xff09;文件等于文件内容加上文件属性,对于文件的操作就包括对于文件内容的操作和文件属性&…

像素坐标系与图像坐标系

前言 在数字图像处理中&#xff0c;经常会看到使用 (x, y) 表示图像中的某个像素点。 在一些图像处理库&#xff0c;例如 Pillow 、OpenCV 、Numpy 中也会使用到坐标系处理图像的像素点。 介绍 无论是像素坐标系还是图像坐标系&#xff0c;其原理都是一样的&#xff1a; 以…

Freetype 介绍和使用

目录 一、矢量字体引入 二、Freetype 介绍 1.给定一个字符&#xff0c;怎么在字体文件中找到它的关键点&#xff1f; 2.文字显示过程 3.如何使用 freetype 库 三、在 LCD 上显示一个矢量字体 1.使用 wchar_t 获得字符的 UNICODE 值 2.使用 freetype 得到位图 3.在屏幕上…

Linux 内核优化:提升性能测试效率的关键步骤

大家好&#xff0c;本文介绍了如何通过优化 Linux 内核配置来提高系统性能&#xff0c;特别是在进行性能测试时。从调整文件系统、网络参数到内核参数优化&#xff0c;我们将深入探讨每个关键步骤&#xff0c;以帮助你在性能测试中取得更好的效果。 在进行性能测试时&#xff0…

笔记-Python中的struct模块

了解c语言的人&#xff0c;一定会知道struct结构体在c语言中的作用&#xff0c;它定义了一种结构&#xff0c;里面包含不同类型的数据(int,char,bool等等)&#xff0c;方便对某一结构对象进行处理。而在网络通信当中&#xff0c;大多传递的数据是以二进制流&#xff08;binary …

LabVIEW与Python的比较及联合开发

LabVIEW和Python在工业自动化和数据处理领域各具优势&#xff0c;联合开发可以充分发挥两者的优点。本文将从语言特性、开发效率、应用场景等多个角度进行比较&#xff0c;并详细介绍如何实现LabVIEW与Python的联合开发。 语言特性 LabVIEW 图形化编程&#xff1a;LabVIEW使用…

流程的控制

条件选择语句 我们一般将条件选择语句分为三类&#xff1a; 单条件双条件多条件 本篇文章将分开诉说着三类。 单条件 单条件的语法很简单&#xff1a; if (条件) {// 代码}条件这里我们需要注意下&#xff0c;可以向里写入两种&#xff1a; 布尔值布尔表达式 当然&…

用一个实例看如何分享大量照片 Apache 批量处理和不到50行PHP代码

起因&#xff1a;20多人的同学聚会&#xff0c;有各人拍的照片、视频&#xff0c;包括手机、相机、无人机拍的&#xff0c;仅仅照片原图就已经超过3G了&#xff0c;如果加上视频就很快需要不小的外存了&#xff0c;如何分享和保存这些照片和和视频深究起来是有很多讲究的&#…

黑马集成电路应用开发入门课程

"黑马集成电路应用开发入门课程"旨在引导学员了解集成电路应用开发的基础知识和技能。课程内容涵盖集成电路原理、设计流程、应用开发工具等&#xff0c;通过实践项目和案例分析&#xff0c;帮助学员掌握集成电路应用开发的核心概念和方法&#xff0c;为未来在该领域…

构建第一个ArkTS应用之@卡片事件能力说明

ArkTS卡片中提供了postCardAction()接口用于卡片内部和提供方应用间的交互&#xff0c;当前支持router、message和call三种类型的事件&#xff0c;仅在卡片中可以调用。 接口定义&#xff1a;postCardAction(component: Object, action: Object): void 接口参数说明&#xff1…

Linux---Linux编译器-gcc与g++的使用

GCC是以GPL许可证所发行的自由软件&#xff0c;也是GNU计划的关键部分。GCC的初衷是为GNU操作系统专门编写一款编译器&#xff0c;现已被大多数类Unix操作系统&#xff08;如Linux、BSD、MacOS X等&#xff09;采纳为标准的编译器。 gcc是专门用来编译C语言的&#xff0c;而g是…