工具篇之NATAPP实现内网穿透

news2025/1/21 0:52:35

一、内网穿透

1.1概述

 内网穿透简单来说就是我们可以通过在个人电脑上运行花生壳或者 frp 等方式,让他人访问我们本地启动的服务,而且这种访问可以不受局域网的限制。比如常用的办公室软件等,一般在办公室或家里,通过拨号上网,这样办公软件只有在本地的局域网之内才能访问,那么问题来了,如果是手机上,或者公司外地的办公人员,如何访问到办公软件呢?这就需要natapp内网穿透工具了。

一句话来说就是,让外网能访问你的内网;把自己的内网(主机)当成服务器,让外网能访问

使用内网穿透有什么好处?

  • 没钱买服务器,自嗨用的。。。。。— —
  • 在开发的过程中,有时要用到外网能访问的地址进行一些功能测试,这时内网穿透就方便多了,节省时间。

1.2相关概念

内网 与外网

1、内网:是内部建立的局域网络或办公网络;

2、外网:是通过一个网关或网桥与其他网络系统连接,相对于自己的内网来说,其他网络系统称为外网。

公网 IP 与内网 IP

能否在公网中访问服务器的决定性因素:公网 IP

IP 地址的作用

众所周知, IP 地址是每一位使用互联网的网民都会拥有的标识, IP 地址在互联网中起到的作用是定位,通过 IP 地址我们可以精确的定位到所需资源所在的服务器,这是对于一般用户来讲的,而对于程序员而言,我们需要的则是让用户通过 IP 地址定位到我们部署的资源,既然每个互联网用户都拥有 IP 地址,为什么用户无法直接访问部署在个人PC上的服务呢?

事实上, IP 地址分为两种:公网 IP 和内网 IP

内网 IP : 内网 IP 是用户在使用局域网时,由局域网的网关所分配的 IP 地址,每一个内网 IP 实际上都可以映射到当前所在局域网网关的某一端口( IPV4 地址通过 NAT 与端口映射方式实现,具体原理下文详解),拥有内网 IP 可以被同一局域网下的其他设备所访问到;

公网 IP : 内网的设备想要访问非同一局域网下的资源则必须通过公网 IP ,公网 IP 是没有经过 NAT 转换的由互联网供应商(ISP)提供的最原始的 IP 地址,每一个公网 IP 都可以直接在互联网中被直接定位到。

一个最简单的例子(以前端开发为例) :

当我们使用 webpack-dev-server 来启动一个 node 项目时,我们除了通过localhost:[端口号]的方式以外,与我们的开发设备处于同一局域网下的设备可以通过内网 IP :[端口号]的方式对我们的项目进行访问,但当我们使用自己的流量或者连接其他非当前开发设备所在局域网的设备使用内网 IP :[端口号]的方式进行进行访问时,则无法访问。

原因:

内网 IP 地址仅在当前局域网下可以被定位并访问到,而当我们想要跨局域网访问时,我们的访问请求则需要先映射为公网 IP 然后访问到另一局域网的公网 IP ,最后由另一局域网的网关将其映射到相应的局域网设备,但我们访问的地址属于局域网中的内网 IP ,因此无法定位到其相应的公网 IP

综上所述,当我们想要让处于其他局域网下的设备访问到我们本地资源,必不可缺的就是公网 IP 。

NAT(网络地址转换)技术

网络地址转化技术的核心作用在于实现对公网 IP 地址的复用,即所有的内网主机共用同一个 IP 地址,NAT 的实现方式共有三种:

  • 静态转换:将内网 IP 直接转换为公网 IP 地址,形成一一对应的方式
  • 动态转换:将内网 IP 地址转换为公网 IP 地址,与静态转换不同的是动态转换会在 IP 池中选择空闲 IP 地址进行转换,即每次同一个内网 IP 对应的公网 IP 会发生改变
  • 端口多路复用(PAT 技术):将内网 IP 与公网 IP 的某一端口进行映射,通过公网 IP 的某一端口访问公网

1.3内网穿透工具实现的原理

目前市面上主流的内网穿透工具实现的原理如下:

可见,内网穿透的核心原理在于将外网 IP 地址与内网 IP 地址建立联系,市面上常用的如花生壳工具其核心原理就是依靠一台具有公网 IP 的服务器作为请求的中转站以此来达到从公网访问内网主机的目的。

1.4 内网传统的安全性

  现在服务器被黑的情况,多半是服务器上一些软件/漏洞/端口导致的.你的应用如果放在公网服务器,由于缺少系统安全维护知识,会变得很危险.而用了natapp内网穿透软件之后,将服务器放在本地,暴露给公网的也仅仅是应用层面的一个端口,其他系统上的漏洞/端口都被隐藏起来.从这个层面来说,提高了很多安全性.当然,你的应用本身带来的安全性,比如代码本身有漏洞,如果是映射数据库应用,数据库弱密码等,这需要引起重视,排查映射的应用本身安全性即可.Natapp本身的隧道传输采用ssl256位加密,这种加密安全性现阶段完全无法破解,natapp隧道的安全性无需考虑

二、NATAPP

   natapp 基于ngrok的反向代理软件,通过在公网和本地运行的 Web 服务器之间建立一个安全的通道。natapp 可捕获和分析所有通道上的流量,便于后期分析和重放。具体可以上官网了解 ​​​​​​NATAPP-内网穿透 基于ngrok的国内高速内网映射工具

2.1购买并配置

  • 通过NATAPP实名认证成功之后进入购买隧道的界面进行购买免费隧道

  • 点击购买免费的隧道,一个用户可以拥有两条不同的隧道

  • 购买隧道成功之后我们就能在我的隧道里面看到刚刚购买的隧道了,如果还需要配置可以点击最右边的配置进入配置页面,将本地地址设置为127.0.0.1,回到我的隧道页面

2.2下载NATAPP客户端

1.下载之后,解压至任意目录,得到natapp.exe (linux下无需解压,直接 wget) 

2.获取authtoken 在网站后台,我的隧道处,可以看到刚才购买的隧道 

3.点击复制,打开NATAPP安装位置运行Natapp 

4.打开小黑窗口输入natapp -authtoken=***token复制过来的 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1801529.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ubuntu项目部署

解压jdk tar -zxvf jdk-8u151-linux-x64.tar.gz 配置Java环境变量: vim ~/.bashrc export JAVA_HOME/root/soft/jdk1.8.0_151 export JRE_HOME${JAVA_HOME}/jre export CLASSPATH.:${JAVA_HOME}/lib:${JRE_HOME}/lib export PATH${JAVA_HOME}/bin:$PATH 设置环境变…

workerman error 2 send buffer full and drop package

来源 报错信息:workerman error 2 send buffer full and drop package 定时发送数据的时候,本地偶尔出现这种情况 线上第一条数据发出去就报错了,数据改小一点可以发,不过一会还是会出现这种情况。 解决 根据我的经验&#xf…

基于comsol进行等离子体缺陷的二维微结构电磁调制仿真

关键词:微结构器件;禁带效应;等离子体缺陷;开关调控;电磁波调制 光子晶体是一种介电常数呈周期变化的材料,通常通过调节介质材料与空气或其他具有折射率差异材料间的周期排列结构,实现电磁波透…

问题:11单位内部人员对行政机关作出的行政处分不服,可申请行政复议. #其他#微信

问题:11单位内部人员对行政机关作出的行政处分不服,可申请行政复议. 参考答案如图所示

Java Web学习笔记5——基础标签和样式

<!DOCTYPE html> html有很多版本&#xff0c;那我们应该告诉用户和浏览器我们现在使用的是HMTL哪个版本。 声明为HTML5文档。 字符集&#xff1a; UTF-8&#xff1a;现在最常用的字符编码方式。 GB2312&#xff1a;简体中文 BIG5&#xff1a;繁体中文、港澳台等方式…

烧写uboot、linux镜像、根文件系统到开发板

烧写uboot、linux镜像、根文件系统到开发板 环境介绍 本博客使用x6818开发板。 公司&#xff1a;三星 ARM架构 Cortex-A53核 型号&#xff1a;S5P6818 特性&#xff1a;8核&#xff0c;最高主频2GHz 烧写uboot 使用网络烧写 网络烧写上位机是Ubuntu虚拟机。 先利用上…

Lidar3607.2 雷达点云数据处理软件新增功能介绍

新特性:预处理航带平差新增livox激光器镜面误差改正,新增多源航带平差&#xff0c;提升点云和影像匹配精度优化配准功能流程&#xff0c;ICP功能支持点云与模型配准安置检校新增轨迹自动裁剪轨迹解算时投影坐标增加Z值记录数据管理新增点云色彩亮度和对比度调节新增多段线平滑工…

【多模态/CV】图像数据增强数据分析和处理

note 多模态大模型训练前&#xff0c;图片数据处理的常见操作&#xff1a;分辨率调整、网格畸变、水平翻转、分辨率调整、随机crop、换颜色、多张图片拼接、相似图片检测并去重等 一、分辨率调整 from PIL import Image def resize_image(original_image_path, save_image_p…

机器学习与数据挖掘知识点总结(一)

简介&#xff1a;随着人工智能&#xff08;AI&#xff09;蓬勃发展&#xff0c;也有越来越多的人涌入到这一行业。下面简单介绍一下机器学习的各大领域&#xff0c;机器学习包含深度学习以及强化学习&#xff0c;在本节的机器学习中主要阐述一下机器学习的线性回归逻辑回归&…

【JavaScript函数详解】Day04

JavaScript函数详解 JavaScript 基础 - 第4天笔记函数声明和调用声明&#xff08;定义&#xff09;调用 参数形参和实参参数默认值 返回值函数补充细节作用域全局作用域局部作用域变量的访问原则 匿名函数函数表达式立即执行函数 逻辑中断小知识&#xff08;转换为Boolean型&am…

WPF视频学习-基础知识篇

1.简介WPF&#xff1a; C# 一套关于windows界面应用开发框架 2.WPF和winform的差别 &#xff0c;(WPF比较新) 创建新项目使用模板&#xff1a; WPF使用.xaml后缀&#xff0c;双击可查看操作界面和设置代码&#xff0c;其文件展开之后中有MainWindow.xaml.cs为程序交互逻辑。…

Vitis HLS 学习笔记--初始化与复位

目录 1. 简介 2. 控制初始化与复位 2.1 初始化 2.2 复位 2.3 全局复位选项 2.4 复位排除 3. 阵列初始化和复位 3.1 不使用 static 限定符 3.2 使用 static 限定符 3.3 BRAM 和 URAM 4. 总结 1. 简介 本文对比分析两个方面的初始化和复位&#xff1a;阵列和控制&…

如何检测UV胶的均匀性?

如何检测UV胶的均匀性&#xff1f; 检测UV胶的均匀性可以通过以下几种方法来实现&#xff1a; 肉眼目视检查&#xff1a; 这是最简单直接的方法。将UV胶涂在表面上&#xff0c;使用裸眼观察胶层的表面。特别注意是否存在气泡、颜色不均匀、裂纹或其他明显的不均匀性。如凹凸不…

选择排序(直接选择排序与堆排序)----数据结构-排序②

1、选择排序 1.1 基本思想 每一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;放在序列的起始位置&#xff0c;直到全部待排序的数据元素排完就停止 。 1.2 直接选择排序 排序思想&#xff1a; ①在元素集合array[i]--array[n-1]中选择…

FM148A,FM146B运行备件

FM148A,FM146B运行备件。电源保险丝仓主控底座的保险丝仓示意图底座上共有两个保险丝&#xff08;800mA&#xff09;&#xff0c;FM148A,FM146B运行备件。&#xff08;10&#xff5e;73&#xff09;30/195主控单元2.K-CUT014槽底座地址接口主控站地址拨开关从上到下为二进制数的…

Day46 代码随想录打卡|二叉树篇---从中序与后序遍历序列构造二叉树

题目&#xff08;leecode T106&#xff09;&#xff1a; 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 方法&#xff1a;本题要通过中序遍历和后…

Windows无法安装到这个硬盘空间。选定的分区上启用了BitLocker驱动器加密。请在控制面板中暂停(也称为禁用)BitLocker,然后重新开始安装。

我们安装操作系统的时候&#xff0c;到了选择安装分区的地方&#xff0c;我们选中的分区提示“无法在驱动器的分区上安装Windows”&#xff0c;然后我们点击显示详细信息&#xff0c;提示如图下所示 分析原因&#xff0c;可能是之前的分区未进行格式化。但是这个时候我们无法格…

基于51单片机水塔水位控制系统

基于51单片机水塔水位控制 &#xff08;仿真&#xff0b;程序&#xff09; 功能介绍 具体功能&#xff1a; 1.用滑动变阻器模拟水位&#xff0c;ADC0809将模拟信号转换为数字信号&#xff1b; 2.LCD1602显示当前水位和水位阈值&#xff1b; 3.当水位超过设定阈值&#xff…

STM32智能小车学习笔记(避障、循迹、跟随)

我们使用的是STM32CubeMX软件和MDK5 芯片使用的是STM32F103C8T6 完成对STM32CubeMX的初始化后开始我们的第一步点亮一个LED灯 一、点亮LED灯 点亮PC13连接的灯 打开STM32CubeMX软件&#xff0c;pc13设置为输出模式 然后按照这样配置&#xff0c;user label 设置成这个IO口代…

Go微服务: 关于消息队列的选择和分类以及使用场景

消息队列概述 在分布式系统和微服务架构中&#xff0c;消息队列&#xff08;Message Queue&#xff09;是一个核心组件&#xff0c;用于在不同的应用程序或服务之间异步传递消息在 Go 语言中&#xff0c;有多种实现消息队列的方式&#xff0c;包括使用开源的消息队列服务&…