国产神器,这个太强悍了 !

news2024/12/23 18:43:37

自从 ChatGPT 火了以后,国内的 AI 大模型也是越来越多,各家都有不同的侧重点,其中,咱们国家队的代表就是阿里的通义千问了。就在今天,通义千问推出了第二代开源模型系列Qwen2,下面跟大家重点介绍一下这个新模型到底有多牛逼?

1

Qwen2简介

6月7日,通义千问推出第二代开源模型系列Qwen2,首波开源5款模型:Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B 和 Qwen2-72B。

Qwen2所有尺寸模型都使用了GQA(分组查询注意力)机制,以便让用户体验到GQA带来的推理加速和显存占用降低的优势。在中英文之外,模型训练数据中增加了27种语言相关的高质量数据,提升了模型的多语言能力。Qwen2还增大了上下文长度支持,Qwen2-72B-Instruct能够完美处理128k上下文长度内的信息抽取任务。

Qwen2系列模型拥有强大的多语言、长文本处理、代码、数学、逻辑推理等能力,在MMLU、GPQA、HumanEval、GSM8K、BBH、MT-Bench、Arena Hard、LiveCodeBench等国际权威测评中,新鲜出炉的Qwen2-72B一举斩获十几项世界冠军,超过美国的Llama3和欧洲的Mixtral。

40dfc3c82ebde81bbc7a410861bc90b9.jpeg

2

Qwen2模型详解

1、Qwen2性能如何?

相比2月推出的Qwen1.5,Qwen2实现了整体性能的代际飞跃。在权威模型测评榜单OpenCompass中,开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型。刚刚开源的Qwen2-72B,整体性能相比Qwen1.5-110B又取得了大幅提升!

1a2040c54debd7b5a75ed07f03e70be7.png

图说:Qwen2-72B在十多个权威测评中获得冠军,超过美国的Llama3-70B模型)

这个Qwen2新模型刚上线,就获得了很多海外的开发者的正向反馈:

1、医学术语更准确

d4f01e0e33255ee56236486d25961708.png

2、翻译更准确

5ca6e11178b2bc77abb4f47dcbaeb45e.png

3、编程和推理能力更强

c39452b5bcde174ee946d9cc67a04fcf.png

2、如何体验Qwen2模型能力?

我们要怎么第一时间体验Qwen2新模型的能力呢?我们需要先登录魔搭 CompassArena 大模型竞技场,登录地址如下:

https://modelscope.cn/studios/opencompass/CompassArena/summary

ac34321ae19b36ad89af923ff1d32d23.png

登录后,我们选择【双模型对战】看抽卡能不能抽到Qwen2,需要多测试几轮,才会抽中。

64ab495bf74f1efe649bc2fab60cf861.png

如果一直抽不中,我们也可以直接选择【双模型对战(自选)】模式,给Qwen2 Pick对手,这里有很多市面上的模型,我们直接启动对战~

392e6d38beb2ba6a74213e88471011bf.png

我们通常对比两个模型的能力更强,主要对比他的逻辑推理能力,下面我问一个问题,让Qwen2模型和其他模型做比较,看看哪个更聪明?

问题:煮1个鸡蛋需要5分钟,煎一块饼的一面需要3分钟,饼需要翻面两次才能熟。煮锅和煎锅可以同时开火,煎锅一次最多只能放两块饼,那么我想要煮3个鸡蛋和2块饼,一共需要几分钟?

b50b1d30696bca9ed2168297809e583e.png

通过上面对比,我们发现Qwen2这个模型回答是正确的,总共需要6分钟,而且逻辑能力很强,条理也非常清楚 。从这里可以看出来,虽然国内有很多AI模型,但是我们必须要选择一个更聪明、出错率低的模型非常重要,不然它在那里胡说八道,你还听得很有道理,就非常尴尬了。

通义千问官网地址:

https://tongyi.aliyun.com/qianwen/

觉得内容还不错的话,给我点个“在看”呗

0263184bf70f8b1a790315cc8a359f86.gif

b60243ffb0a69c02d2655babe95c3b41.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1801224.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【面试干货】索引的优缺点

【面试干货】索引的优缺点 1、创建索引可以大大提高系统的性能(**优点**)2、增加索引也有许多不利的方面(**缺点**) 💖The Begin💖点点关注,收藏不迷路💖 1、创建索引可以大大提高系…

mac无法读取windows分区怎么办 苹果硬盘怎么读取

对于Mac电脑用户但有Windows系统使用需求的,我们可以通过Boot Camp启动转换助理安装Windows分区这个方案来解决,不过因为两个系统的磁盘格式不同,相应的也会产生一些问题,例如无法正常读取windows分区。下面本文就详细说明mac无法…

前端三大件速成 05 javascript(1)js组成、引入、基本语法

文章目录 一、js组成二、js的引入三、基本语法1、变量2、基本规范3、关键字4、数据类型(1)基本数据类型(2)引用数据类型(3)数据类型转换(4)typeof运算符 5、运算符6、流程控制&#…

优化扩散模型中的采样计划

在生成模型领域,扩散模型(Diffusion Models, DMs)因其卓越的生成质量而成为最新的技术趋势。但这些模型的一个关键缺点是它们的采样速度较慢,需要通过大型神经网络进行多次顺序函数评估。扩散模型通过一个称为采样计划的离散噪声水…

Elastic Search(ES)Java 入门实操(2)搜索代码

上篇解释了 ES 的基本概念和分词器。Elastic Search (ES)Java 入门实操(1)下载安装、概念-CSDN博客 Elastic Search(ES)Java 入门实操(3)数据同步-CSDN博客 这篇主要演示 Java 整合…

Day 42 LVS四层负载均衡

一:负载均衡简介 1.集群是什么 ​ 集群(cluster)技术是一种较新的技术,通过集群技术,可以在付出较低成本的情况下获得在性能、可靠性、灵活性方面的相对较高的收益,其任务调度则是集群系统中的核心技术 …

PyTorch深度学习实战(44)——基于 DETR 实现目标检测

PyTorch深度学习实战(44)——基于 DETR 实现目标检测 0. 前言1. Transformer1.1 Transformer 基础1.2 Transformer 架构 2. DETR2.1 DETR 架构2.2 实现 DETR 模型 3. 基于 DETR 实现目标检测3.1 数据加载与模型构建3.2 模型训练与测试 小结系列链接 0. 前…

windows安装tensorboard

要在Windows系统上使用TensorBoard来可视化你的TensorFlow模型训练过程,请按照以下步骤进行操作: 安装TensorFlow和TensorBoard 安装Python: 确保你已经安装了Python。你可以从Python官方网站下载并安装最新版本的Python。 安装TensorFlow&…

kafka-重试和死信主题(SpringBoot整合Kafka)

文章目录 1、重试和死信主题2、死信队列3、代码演示3.1、appication.yml3.2、引入spring-kafka依赖3.3、创建SpringBoot启动类3.4、创建生产者发送消息3.5、创建消费者消费消息 1、重试和死信主题 kafka默认支持重试和死信主题 重试主题:当消费者消费消息异常时&…

基于思通数科大模型的设备隐患智能检测:图像处理与声音分析的融合应用

在现代工业生产中,设备的稳定运行对保障生产效率和产品质量至关重要。然而,设备的老化、磨损以及异常状态的检测往往需要大量的人力和物力。思通数科大模型结合图像处理技术和声音分析技术,为设备隐患检测提供了一种自动化、高效的解决方案。…

源码、反码和补码

对于有符号数而言,原码就是一个数的二进制表示。二进制的最高位是符号位,0 表示正数,1 表示负数。 计算机用数的原码进行显示,数的计算和存储是用补码进行的。 正数的原码,反码和补码都一样,即正数三码合…

Matching Anything by Segmenting Anything

摘要 在复杂场景中跨视频帧稳健地关联相同对象是许多应用的关键,特别是多目标跟踪(MOT)。当前方法主要依赖于标注的特定领域视频数据集,这限制了学习到的相似度嵌入的跨域泛化能力。我们提出了MASA,一种新颖的方法用于…

JavaScript 动态网页实例 —— 图像显示

图像是网页设计中必不可少的内容之一,而图像的显示方式更是关系到网站的第一印象。本章介绍图像的显示,主要包括:图片的随机显示、图像的显示和隐藏、图像的滚动显示、图像的探照灯扫描显示、多幅图像的翻页显示、图像的水纹效果显示、全景图效果显示手电照射效果显示以及雷达…

揭秘800G以太网——简介

什么是800G以太网? 800G以太网是一种高带宽以太网标准,每秒可传输800 Gbps(千兆位每秒)的数据速率。它代表了以太网技术的又一进步,旨在满足不断增长的数据传输需求以及处理大量数据的能力。因此,800G以太…

杰理AC632N提升edr的hid传输速率, 安卓绝对坐标触摸点被识别成鼠标的修改方法

第一个问题: 首先修改edr的hid传输速率.修改你的板级配置,里面的一个地方给注释掉了,请打开那个注释就能提升edr的hid传输效率了 第二个问题: 修改632n系别把触摸板的hid报告描述符识别成鼠标点,修改如下: 注释掉上面的pnp,改成下面的

RocketMQ的安装

首先到RocketMQ官网下载页面下载 | RocketMQ (apache.org),本机解压缩,作者在这里用的是最新的5.2.0版本。按照如下步骤安装。 1、环境变量配置rocket mq地址 ROCKETMQ_HOME D:\rocketmq-all-5.2.0-bin-release 在变量path中添加”%ROCKETMQ_HOME%\bi…

04 架构核心技术之分布式消息队列

本课时的主题是分布式消息队列,分布式消息队列的知识结构如下图。 本课时主要介绍以下内容。 同步架构和异步架构的区别。异步架构的主要组成部分:消息生产者、消息消费者、分布式消息队列。异步架构的两种主要模型:点对点模型和发布订阅模型…

RandomDate(接口参数化-随机生成日期)

目录 1、入口位置:2、验证函数生成值3、获取 年月日时分秒 的全随机4、时间函数 前言:有时候我们做性能测试或者接口测试时,参数需要传入日期格式,但是又不想每次都是用同一个日期,我们就可以使用Jmeter工具中函数助手…

[MQTT]服务器EMQX搭建SSL/TLS连接过程(wss://)

👉原文阅读 💡章前提示 本文采用8084端口进行连接,是EMQX 默认提供了四个常用的监听器之一,如果需要添加其他类型的监听器,可参考官方文档🔗管理 | EMQX 文档。 本文使用自签名CA,需要提前在L…

三次谐波式发电机定子单相接地保护Simulink仿真

在用于接地保护的发电机定子回路的仿真模型的基础上增加三次谐波电动势,得到用于仿真三次谐波式接地保护的发电机定子回路的Simulink仿真模型,如图1所示。 图 1发电机定子回路的Simulink仿真模型 发电机端和中性点侧的三次谐波电压的获取采用如图2所示的方法。 图 2 …