opencv实战小结-银行卡号识别

news2025/4/8 9:25:59

实战1-银行卡号识别

项目来源:opencv入门

项目目的:识别传入的银行卡照片中的卡号

难点:银行卡上会有一些干扰项,如何排除这些干扰项,并且打印正确的号码是一个问题

在这里插入图片描述

最终效果如上图

实现这样的功能需要以下几个步骤:

  1. 首先必须有与银行卡中卡号数字基本一样的数字模板,将模板中的数字提取出来并存储起来(0-9)
  2. 将需要检测的银行卡图片中的数字提取出来
  3. 将银行卡的数字与模板数字一一对比,最终找到一个匹配度最高的数字,并把数字标注上

整个思路很简单,但是难点就在于如何将图片处理得更加容易让计算机识别数字,所以整个项目要围绕着图片得的处理来做

第一步-提取数字模板

这是事先准备好的数字模板

在这里插入图片描述

接下来要将图片中的数字都找到,也就是找到各个数字在整个图片上的像素点坐标(轮廓)

首先得到图片的灰度图,再进行二值化处理(这一切都是为了让图片中的数字更易于识别)

# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值图像
ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]#超过阈值部分取maxval ( 最大值 ),否则取0

然后会得到这样的图像
在这里插入图片描述

好了,现在图片已经很清晰了,不需要再进行其它的处理了,直接将其提取

那怎么提取呢?

可以通过cv2.findContours()找到数字的轮廓

函数 cv2.findContours() 有三个参数,第一个是输入图像,第二个是 轮廓检索模式,第三个是轮廓近似方法。返回值有三个,第一个是图像,第二个 是轮廓,第三个是(轮廓的)层析结构。轮廓(第二个返回值)是一个 Python 列表,其中存储这图像中的所有轮廓。每一个轮廓都是一个 Numpy 数组,包 含对象边界点(x,y)的坐标。

注意新版本中这个api的返回值有变化

返回两个参数contours和 hierarchy,contours就是每个数字的轮廓数组,包含边界点的坐标

其中cv2.RETR_EXTERNAL是获取外轮廓

contours, hierarchy = cv2.findContours(ref.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

接下来可以将轮廓画出来看看

会用到cv2.drawContours()函数

函数 cv2.drawContours() 可以被用来绘制轮廓。它可以根据你提供 的边界点绘制任何形状。它的第一个参数是原始图像,第二个参数是轮廓,一 个 Python 列表。第三个参数是轮廓的索引(在绘制独立轮廓是很有用,当设置 -1时绘制所有轮廓)。接下来的参数是轮廓的颜色和厚度等。

cv2.drawContours(img,contours,-1, (0, 0, 255), 3)

看下效果

在这里插入图片描述

好,现在轮廓都找到了,并且我们也有了轮廓的坐标,这个时候我们应该将每个数字的像素点位置都存起来(并不是将图片分割!,整个图片仍然没有任何变化)

好,现在有一个要注意的点,那就是我们在上面得到的contours数组并不是按图片中各个数字从左到右排列的,也就是说数组中第一个坐标可能是图片中8的坐标,那这个时候我们就必须对数组进行排序,排序顺序就是从左到右存

那排序怎么实现呢,其实就是根据x坐标从小到大排序就行了

排完序之后,contours中0下标存的就是数字0的模板,这里很好的利用了数组下标的优点

好的,排序完之后,我们就可以来存这个数字的模板了

思路是遍历contours数组,得到每个模板的坐标以及宽高,利用x+w就能得到图片的x轴范围,y+h就能得到y轴的范围,把他们存起来就得到一个数字的模板了

digits = {}
#遍历每一个轮廓
for (i,c) in enumerate(contours):
    #计算外接矩形并resize合适的大小
    (x, y, w, h) = cv2.boundingRect(c)
    # cv2.rectangle(img,(x,y),(x + w, y + h),(0, 0, 255), 2)
    roi = ref[y:y + h, x:x + w]
    # 第二个参数是输出图像的宽高
    roi = cv2.resize(roi, (57, 88))
    # 每一个数字对应每一个模板
    digits[i] = roi

至此,我们项目的第一步就完成了

接下来就是将要检测的图像中的数字提取出来,其实整个提取思路都是一样的,但是银行卡的图像比我们的模板往往更加复杂,所以我们要对图片增加一些处理的步骤

跟着上面的来说,我们对复杂图片的处理需要引入卷积核,这里我们定义两个卷积核

# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))

一个是9x3的矩阵,一个是5x5

下面对图像进行处理,老规矩,取灰度图

在这里插入图片描述

然后进行礼帽处理,目的是为了突出更明亮的区域

tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)

在这里插入图片描述

接下来再用 Sobel核子对图片进行卷积,目的的为了得到图像梯度,也就是边缘检测

我们现在要做的是把可能为数字的区域都找出来

gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")

在这里插入图片描述

上图看上去更加模糊了,但是数字和非数字区域的明亮度变了

好的,接下来可以通过闭操作(先膨胀,再腐蚀),将数字连起来(是为了最后找到数字区域,因为卡号是4个数字连在一起的,我们把4个数字的区域找出来)

变成这样

在这里插入图片描述

再来一次阈值操作

thresh = cv2.threshold(gradX, 0, 255,
                       cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]

变成这样

在这里插入图片描述

矩形区域好像白色没有填满,再来一次闭操作

在这里插入图片描述

ok了,现在疑似数字的区域都很明显了吧,那下一步就是将这个区域进行排除,找到真正为银行卡号的区域,其他的区域就不要了

那怎么做呢?我们先把他们的轮廓都找出来,然后判断这些轮廓的宽度,符合银行卡号区域宽的的留下,不符合的去掉就可以了

在这里插入图片描述

# 计算轮廓
contours_, hierarchy_ = cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cnts = contours_
cur_img = image.copy()
cv2.drawContours(cur_img, cnts, -1, (0, 0, 255), 3)
cv_show('img', cur_img)
locs = []
# 遍历轮廓
for (i, c) in enumerate(cnts):
    # 计算矩形
    (x, y, w, h) = cv2.boundingRect(c)
    ar = w / float(h)

    # 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
    if ar > 2.5 and ar < 4.0:

        if (w > 40 and w < 55) and (h > 10 and h < 20):
            # 符合的留下来
            locs.append((x, y, w, h))

得到卡号轮廓后,同样对其从左至右排序

好了,那接下来干嘛呢,我们刚刚得到的是四个数字组成的区域的轮廓,这个时候我们应该遍历这些区域,得到里面的四个数字的轮廓

同样也是个遍历操作

for (i, (gX, gY, gW, gH)) in enumerate(locs):
     groupOutput = []
    # 根据坐标提取每一个组
    group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
    cv_show('group', group)

会得到四个这样的组

在这里插入图片描述

然后就获取这个组的轮廓,就像第一步骤一样,将数字提取出来就可以了

#计算每一组的轮廓
    digitCnts, hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    # 从左到右排序
    digitCnts = myutils.sort_contours(digitCnts, method="left-to-right")[0]

好的,接下来就是最重要的第三部操作了,将模板与上面得到的数字匹配,找到匹配度最高的那个模板数字就是我们要找的数字了

 #计算每一组的每一个数值
    for c in digitCnts:
        # 找到当前数值的轮廓,resize成合适的的大小
        (x, y, w, h) = cv2.boundingRect(c)
        roi = group[y:y + h, x:x + w]
        roi = cv2.resize(roi, (57, 88))
        # cv_show('roi', roi)

        # 计算匹配得分
        scores = []
        for (digit, digitROI) in digits.items():
            # 模板匹配
            result = cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF)
            # print('result',result)
            # 获取匹配度最高的数值
            (_, score, _, _) = cv2.minMaxLoc(result)
            scores.append(score)
        print("scores",scores)
        # 得到最合适的数字
        groupOutput.append(str(np.argmax(scores)))
        print('groupOutput',groupOutput)

完成上述步骤之后,我们的groupOutput就存放了我们识别出来的银行卡号了,我们只需要在图片上将卡号绘制出来就可以了

  # 画出来
    cv2.rectangle(image, (gX - 5, gY - 5),(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
    cv2.putText(image, "".join(groupOutput), (gX, gY - 15),cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)
    # 得到结果
    output.extend(groupOutput)

最终效果如下

在这里插入图片描述


好了,以上就是此小项目的实现过程

总结:这是我学cv的第一个小实战项目,确实感觉蛮有意思的,学之前觉得这个东西很神奇,学习之后会发现其实一切都是按照逻辑一步步来的,没有那么"高大上",继续努力吧

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1799976.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

蓝桥云课第12届强者挑战赛

第一题&#xff1a;字符串加法 其实本质上就是一个高精度问题&#xff0c;可以使用同余定理的推论 &#xff08;ab&#xff09;%n((a%n)(b%n))%n; #include <iostream> using namespace std; const int mod1e97; int main() {string a,b;cin>>a>>b;ab;int …

GAN网络理论和实验(二)

文章目录 一、说明二、什么是生成对抗网络&#xff1f;三、判别模型与生成模型四、生成对抗网络的架构五、你的第一个 GAN六、准备训练数据七、实现鉴别器八、实现生成器九、训练模型十、检查 GAN 生成的样本十一、使用 GAN 生成手写数字十二、准备训练数据十三、实现鉴别器和生…

LabVIEW减压阀和温控阀综合测试系统

在使用LabVIEW开发阀门测试软件时&#xff0c;特别是针对减压阀和温控阀&#xff0c;测试内容和注意事项包括以下方面&#xff1a; 测试内容 压力测试&#xff1a; 入口压力&#xff1a;测量阀门在不同入口压力下的表现。 出口压力&#xff1a;确保减压阀能够将出口压力控制在…

【TIPs】 Visual Stadio 2019 中本地误使用“git的重置 - 删除更改 -- hard”后,如何恢复?

环境&#xff1a; VS 2019Windows10本地版本管理&#xff08;非远程&#xff09; 前言&#xff1a; git 在Visual Stadio 2019中集成了git的版本管理&#xff0c;在本地用来做版本管理&#xff0c;本来比较好用。 不过有一次&#xff0c;由于拿最初始的版本的时候&#xf…

代驾公司在市场竞争中如何保持优势?

在竞争激烈的市场中&#xff0c;代驾公司可以通过多种策略保持其竞争优势&#xff0c;包括利用市场潜力、创新服务模式、提高服务效率以及加强品牌建设等。以下是具体的策略&#xff1a; 利用市场潜力 汽车产业空间巨大&#xff1a;随着汽车保有量的增加&#xff0c;代驾行业…

centos官方yum源不可用 解决方案(随手记)

昨天用yum安装软件的时候&#xff0c;就报错了 [rootop01 ~]# yum install -y net-tools CentOS Stream 8 - AppStream 73 B/s | 38 B 00:00 Error: Failed to download metadata for repo appstream: Cannot prepare internal mirrorlis…

Intel VT-x怎么开启?如何解决VMware打开虚拟机报错问题?

许多小伙伴在安装完VMware不能打开虚拟机&#xff0c;每次打开都会出现一个“此主机支持 Intel VT-x&#xff0c;但 Intel VT-x 处于禁用状态”的报错&#xff0c;然后因此启动不了虚拟机。今天小编就带来如何解决这个报错的方法。 什么是Intel VT-x&#xff1f; 这是英特尔cp…

从零开始手把手Vue3+TypeScript+ElementPlus管理后台项目实战六(引入pinia,注册成功返回的信息在主页显示)

简介 pinia是多页面之间共享数据的一个组件&#xff0c;用法比较简单&#xff0c;具体参照以下。 安装Pinia pnpm install pinia引入Pinia main.ts 新增store src目录下新建stores目录&#xff0c;stores目录下新增user.ts文件 import { ref } from vue; import { define…

论文代码解读STPGNN

1.前言 本次代码文章来自于《2024-AAAI-Spatio-Temporal Pivotal Graph Neural Networks for Traffic Flow Forecasting》&#xff0c;基本模型结构如下图所示&#xff1a; 文章讲解视频链接 代码开源链接 接下来就开始代码解读了。 2.代码解读 class nconv(nn.Module):de…

离散数学答疑 3

&#xff5e;A&#xff1a;A的补集 有时候空集是元素&#xff0c;有时候就是纯粹的空集 A-B的定义&#xff1a; 笛卡尔积&#xff1a; 求等价关系&#xff1a;先求划分再一一列举 不同划分&#xff1a;分几块。一块&#xff1a;两块&#xff1a;三块&#xff1a;分别计算 Ix是…

2024-5-7 石群电路-26

2024-6-7&#xff0c;星期五&#xff0c;15:00&#xff0c;天气&#xff1a;阴转小雨&#xff0c;心情&#xff1a;晴。今天虽然是阴雨天&#xff0c;但是心情不能差哦&#xff0c;离答辩越来越近了&#xff0c;今天学完习好好准备准备ppt&#xff0c;加油学习喽~ 今日观看了石…

Vue 学习笔记 总结

Vue.js 教程 | 菜鸟教程 (runoob.com) 放一下课上的内容 Vue练习 1、练习要求和实验2的用户注册一样&#xff0c;当用户输入后&#xff0c;能在下方显示用户输入的各项内容&#xff08;不需要实现【重置】按钮&#xff09; 2、实验报告中的实验小结部分来谈谈用JS、jQuery和…

接口幂等性设计(5 大方案罗列)

结合案例、列举场景的接口幂等性设计方案。 方案 1. 状态机 业务场景&#xff0c;数据审核成功后进行短信通知&#xff0c;或者是订单状态变成已支付后&#xff0c;短信通知用户订单生成的详细信息&#xff0c;等等和状态有关的操作。 假设 status&#xff1a;0&#xff08;待…

vue改造四级树状可输入table

vue改造四级树状可输入table <template><div class"dimension_wary"><div class"itemHeader"><div class"target"></div><div class"sort">X2</div><div class"weight">…

xiaolingcoding 图解网络笔记——基础篇

文章目录 参考一、网络模型有哪几层DMANAPI 机制二、键入网址到网页显示&#xff0c;期间发生了什么&#xff1f;1. HTTP2. DNS3. 协议栈4. TCP5. IP6. MAC7. 网卡8. 交换机9. 路由器10. 服务器 与 客户端的互相扒皮&#xff08;添加、删除头部信息&#xff09;参考图HTTP 请求…

部署kubesphere报错

安装kubesphere报错命名空间terminted [rootk8smaster ~]# kubectl apply -f kubesphere-installer.yaml Warning: apiextensions.k8s.io/v1beta1 CustomResourceDefinition is deprecated in v1.16, unavailable in v1.22; use apiextensions.k8s.io/v1 CustomResourceDefini…

【数据结构初阶】--- 顺序表

顺序表&#xff0c;好像学C语言时从来没听过&#xff0c;实际上就是给数组穿了层衣服&#xff0c;本质是一模一样的。 这里的顺序表实际是定义了一个结构体&#xff0c;设计各种函数来实现它的功能&#xff0c;比如说数组中的增删改查插入&#xff0c;这些基本操作其实平时就会…

【YOLOV8】4.图片分类-训练自己的数据集

Yolo8出来一段时间了,包含了目标检测、实例分割、人体姿态预测、旋转目标检测、图像分类等功能,所以想花点时间总结记录一下这几个功能的使用方法和自定义数据集需要注意的一些问题,本篇是第四篇,图像分类功能,自定义数据集的训练。 YOLO(You Only Look Once)是一种流行的…

拥抱生态农业,享受绿色生活

随着人们对健康生活的追求日益增强&#xff0c;生态农业逐渐成为人们关注的焦点。我们深知生态农业对于保护生态环境、提高农产品品质的重要性&#xff0c;因此&#xff0c;我们积极推广生态农业理念&#xff0c;让更多的人了解并参与到生态农业的实践中来。 生态农业的蓝总说&…

ALSA 用例配置

ALSA 用例配置。参考 ALSA 用例配置 来了解更详细信息。 ALSA 用例配置 用例配置文件使用 配置文件 语法来定义静态配置树。该树在运行时根据配置树中的条件和动态变量进行评估&#xff08;修改&#xff09;。使用 用例接口 API 解析结果并将其导出到应用程序。 配置目录和主…