大模型在信用卡行业的应用探索

news2024/11/17 13:50:38

2022年11月,OpenAI发布ChatGPT3.5,迅速引起各界广泛关注,引发了人工智能领域新一轮发展热潮。ChatGPT作为一款基于人工智能技术的大语言模型(LLMs),在文本生成、对话理解、多领域知识覆盖等方面具有卓越表现。本文基于ChatGPT的技术原理,简要介绍国内大模型的发展现状,重点介绍大模型在信用卡行业全生命周期的应用,并探讨未来金融行业大模型的发展方向。

ChatGPT3.5发布后,引起社会各界广泛关注和讨论,上线5天用户注册量达100万,上线2个月月活用户超过1亿,成为迄今为止用户增长速度最快的消费级应用程序。它不仅可以通过谷歌三级程序员考试,在雅思和托福考试、司法考试、编写文案和论文、诗词歌赋等方面也有非常优异的表现。2023年3月14日,OpenAI发布ChatGPT4.0,它是基于GPT架构开发的对话式AI模型,通过学习大量的现成文本和对话集合,根据用户的文本输入产生相应的智能回答,可以像人类那样进行即时对话。因此,可以把ChatGPT简单理解为一个由AI驱动的聊天机器人。2024年2月15日,OpenAI发布的Sora再次震惊世界。Sora模型的核心能力在于,能够根据用户输入的文本描述,生成长达一分钟的高质量视频,这些视频不仅视觉质量高,而且与用户的文本提示高度一致。这一成果的发布,预示着视频制作和内容创作方式的革命性变化。

然而,ChatGPT的成功并非偶然,而是得益于一系列先进的技术和创新。其中,最为核心的就是Transformer架构、预训练加微调和多轮对话处理等训练方法,这些技术的应用使得ChatGPT能够实现对自然语言的理解和生成,并提供高质量的对话体验。

一、国内大模型的发展现状

全球范围内大模型已进入了一个高速发展期,各大科技企业和研究机构如微软、谷歌、Meta、亚马逊等在这一领域投入巨大,均推出了面向企业、开发者和个人的众多产品。在国内市场,互联网企业也紧跟技术脚步,研发出多类产品,其中BAT发布的大语言模型产品在中文应用方面表现出色。国内大语言模型产品及访问方式详见表1。

根据头部大模型评测机构(CMMLU、C-eval、SuperCLUE)的综合数据,国内市场已发布的大模型产品在中文表现方面完全可以代替ChatGPT等一众国外产品。

图片

大语言模型有三种使用场景:一是普通用户打开产品网页,通过手机号码注册就可以直接对话访问,基本功能完全免费,部分高级模型需要充值才能使用。二是开发者用户可以通过程序调用大模型的API接口进行访问,并将访问结果整合至自身产品中,调用过程中需要考虑数据安全问题。三是公司用户下载各大公司开源的大模型训练结果并在本地部署,通过训练打造属于本公司个性化的大模型产品。

二、大模型在国内信用卡行业的应用场景

目前,国内外发布的大模型虽然在实现细节、网络架构、训练数据以及优化策略等方面各具特色,但其训练原理基本相同,都是基于深度学习技术,尤其依赖于大量规范语料库的学习和神经网络的训练与优化,这也是为什么国内大模型在中文表现方面可以追赶和超越国外产品的原因。这些大模型凭借强大的能力,能够在信用卡的全生命周期内发挥重要作用,覆盖客户服务、市场营销、风险防控、产品研发、运营维护以及综合办公等多个关键环节,不仅能够有效提升客户满意度,降低人工成本,提高工作效率,还能够为员工提供创意灵感,从而整体改善工作流程。以下结合ChatGPT的工作原理,深入探讨大模型在信用卡行业的应用场景。

1.客户服务

信用卡行业传统客服通常是通过人工客服或预设的问答文档用机器人自动回复客户问题。所谓的线上智能客服,大多是一种基于规则的自动化程序,只能回答预先设定的相关内容、执行特定任务,内容单调且覆盖问题范围有限。银行可通过客服渠道、App、微信银行、网站、社交平台或其他线上渠道创建数字人助手,借助大模型这一超级知识大脑,为客户提供各领域的问答帮助,如账单日、逾期、溢缴款等信用卡常识。这将有助于提高新客户在行内微信银行、App等渠道的访问量和客户黏性,通过与潜在客户的对话,收集客户需求、偏好和目标,持续优化信用卡产品。

对于存量客户,银行可在其登录某一渠道验证身份后进行实时互动,方便客户通过输入语音、文字、图片等信息查询账单、可分期金额,咨询业务流程、热门权益、活动说明、推荐办卡奖励规则、分期产品办理要求、App某一功能所在位置等。银行可基于大模型理解客户表达,精准掌握客户真实需求,结合上下文语境,自动生成用于解答、服务咨询的对话,快速回答客户的问题,同时跳转到对应业务界面。通过内部数据训练、人机交互方式的变革,银行让用户体验到真人的服务品质,实现7×24小时全天候真正的智能客户服务,从而降低客服人工成本,提升客户满意度和品质体验。

2.市场营销

优质的信用卡营销方案能够有效激发客户兴趣,增强客户黏性,提高信用卡的使用率和客户转化率。银行结合营销目标,将业务需求输入至本地大模型,模型将依托客户的基本信息、消费历史及行为偏好进行深度训练。同时,结合业务人员的具体需求,大模型能够生成针对特定客群的信用卡优惠活动、返现计划、奖励机制、专属特权、增值服务及积分兑换等大量方案。银行可从这些方案中筛选出未曾实施的活动,并运用AB Test模式与过往营销方案进行对比,通过实际效果的验证,识别出哪些方案表现更佳,从而持续优化营销策略;将营销结果数据再次输入本地大模型,基于反馈数据进一步优化新的营销方案,通过这种方式不断迭代提升转化率。此外,本地部署的大模型与AIGC技术的结合,不仅能自动化生成营销资料,还能为业务人员提供丰富的营销主题设计方案;配合智能绘图工具(如Midjourney等),自动生成营销图片、海报和banner,从而有效降低人工成本,实现个性化营销方案的快速落地。

在智能外呼营销场景(新户开卡、客户促活、现金分期、商品分期、销卡挽留等)中,目前市场上的智能外呼机器人话术呆板,一旦客户识别出对方是机器人,便会迅速挂断电话,外呼效果不理想,客户体验感差,影响企业形象。银行利用本地已训练好的大模型按照一定表结构如联系方式、姓名、行为偏好、开场话术等,生成一份外呼营销名单,然后将大模型对接客服外呼系统按照名单进行外呼,结合自动语音识别技术(ASR)、文本到语音合成技术(TTS)等语音合成模块技术,使客户通过语音的方式与大模型进行交互,实现真正的“千人千面”话术营销。在与客户交流的过程中,本地大模型可以结合上下文回答客户的各种问题,使客户在获取到有价值的信息后不会立刻挂断电话,为后续的业务开展提供了有利条件,由此可显著提升与客户的互动质量和体验。

3.风险防控

识别客户风险等级并降低不良率,一直是信用卡行业的核心任务之一。大模型通过深度分析海量的交易数据、用户行为及历史风险模型,能够精准识别出客户潜在的风险因素和异常行为。这一功能不仅能为业务人员提供具体的风险因素作为参考,而且能自动生成风险客户名单,业务人员仅需验证名单准确性,提前干预潜在的不良行为即可,从而有效防控风险。

对于优质客户,适度提升信用卡额度不仅有助于扩大消费,还能促进分期业务收益的增长。银行借助本地训练的大模型,通过输入全量优质客户的信用评分、还款历史及收入数据等详细信息,使模型能够自动完成预测与风险评估,生成调额名单,并将这一名单与调额系统对接,即可实现自动提额功能。业务人员只需定期监控提额客户的消费表现,评估提额效果,便能确保策略的有效性和精准性。通过这一流程,银行在确保风险可控的同时,进一步优化客户体验,推动信用卡业务的健康发展。

4.产品研发

研发一款畅销的信用卡产品,对于银行的营收至关重要,同时也对产品研发人员提出了更高的要求。除了基本的金融知识之外,产品研发人员还需要掌握行业内已经发行的各种畅销卡产品的特色与权益、新户礼品、申请说明等详细信息;此外,还需熟悉国内外上千家同业银行的产品特征,以确保新研发的信用卡产品具有行业竞争优势。然而,对于产品研发人员来说,这样的学习成本非常高。为了解决这一问题,银行可以将全行业产品的学习资料提供给大模型,让它通过训练学习,整合碎片知识,并结合当前客户的潜在需求和不同人群的标签,如时尚特征、Z世代等,直接给出具有某种特色的产品及其相关权益、新户礼品、申请说明等信息,由此银行就具有了一种全新的产品研发流程和业务解决方案。新流程下,产品研发人员只需要对大模型提供的众多产品方案进行论证,并通过进一步的调研来衡量产品的覆盖群体、预计发卡量、营收情况、合作机构等后续工作即可。这种流程大大降低了产品研发人员在前期调研的成本,使其能够更多地专注于理解客户需求,并最终在众多方案中甄选出最适合客户需求、兼具个性化和综合性的产品方案,从而提高银行的经营收入。

5.运营维护

大模型凭借强大的文本处理能力,能够读取相关代码并编写详尽的运维文档,提供代码注释、操作指南、故障排除步骤和常见问题解答等信息;同时,还能够针对特定问题生成清晰易懂的解释和操作步骤,帮助运维人员更加高效地处理问题,减少操作失误和故障发生的可能性。

传统运营管理需要耗费大量人力和时间成本,定期输出运营周报、月报、场景评估报告和对应的优化方案,复杂场景甚至要对多个系统的多个模块进行数据汇聚和集中监控。银行基于自主训练的金融垂直大模型,利用生成式AI大模型多模态、跨模态的内容生成能力,对接信用卡部门内部系统,通过插件将大模型的多维能力与外部工具、资源、知识等优势融合。同时,大模型可为一线运营人员提供时效性更高、交互更便捷、内容更丰富、边际成本接近于零的运营支撑能力,如指标趋势分析、运营图表生成、运营报告生成、运营分析和方案推荐等。

自动化技术目前已经很成熟,可以通过模拟人类的键盘和鼠标操作,帮助银行自动化、重复性、标准化地执行繁琐的业务流程,如对账、调账、数据录入、报表生成等,以提高业务效率和减少工作量。将大模型与RPA技术结合,通过语音和文字就可以自动生成RPA的个性化主题代码,并完成自动化部署。银行利用大模型与现有技术的深度融合,可以节约大量的时间和人力资源,从而提高工作效率。

6.综合办公

在综合办公方面,大模型可以基于银行的历史项目文档、办公文档、业务数据、会议纪要等训练数据,创建内部知识库。当银行在商讨一个项目方案或重大决策时,可以在开会之前或过程中,咨询大模型对该问题的看法,使其结合历史数据给予客观的意见。如果在大模型上封装ASR、TTS语音合成模块,就可使其直接参加会议讨论。如此,银行增加了一个了解全部历史数据、客户数据的智能语音助手,效率可想而知。

大模型服务于行内员工的另一种场景,就是编写文档。员工日常工作包括编写会议记录、汇报材料、项目文档等,通常占据员工大量的时间,不但耗时耗力而且很多文档内容极其相似,而通过本地训练的大模型就可以解决这些问题。此外,新入职的员工在了解企业背景、过往项目案例、业务经验、处室工作职责时,同样也可以咨询大模型,不需要死记硬背某些业务知识,方便新员工或调岗员工短时间内迅速上手。

三、未来展望

迄今为止,许多机构已经深刻认识到大模型的能力,并将其应用于实际业务中。

2023年3月,彭博社推出金融领域垂直大模型BloombergGPT,为金融行业提供了高效解决方案。国内相关企业也涉足此领域,度小满、蚂蚁科技等已发布相关产品。度小满开源的“轩辕”大模型已在众多金融机构试用,并在多业务场景初见成效。国内银行业也积极拥抱大模型技术,如工商银行、农业银行、平安银行及北京银行都在多个场景中探索应用大模型,提升了金融服务的智能化水平。

2024年,生成式AI将从模型层走向应用层,从而更好发挥大模型的潜在价值,但是在实际操作中银行还面临一定难点。影响场景落地的因素大致包括硬件算力费用、模型可解释性、企业数据量级、数据隐私安全、专业人才培养等方面。因此,未来的研究方向可能会聚焦在以下几方面:一是提高模型的性能和效率,减少训练和推理的计算成本,简化本地部署流程;二是解决模型可解释性和透明性问题,使得用户可以理解模型的生成过程和背后的逻辑;三是收集整理企业的数据资产,为未来AI普及做准备;四是研究如何解决模型中的隐私泄露问题,并制定相关规章制度及保护措施;五是银行内部培养人工智能及大数据方向的技术人才,不断学习积累技术经验,为真正实施AI场景做准备。

综上所述,大模型在信用卡行业的应用探索已初见成效。从个性化推荐到风险控制,从客户服务到数据分析,大模型正逐渐改变信用卡行业的业务模式和用户体验。随着技术的不断进步,大模型将进一步释放信用卡行业的创新潜力,为消费者提供更便捷、更智能的金融服务,推动信用卡行业的数字化转型和升级。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1799918.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【JVM】从编译后的指令集来再次理解++i和i++的执行顺序

JVM为什么要选用基于栈的指令集架构 与基于寄存器的指令集架构相比,基于栈的指令集架构不依赖于硬件,因此可移植性更好,跨平台性更好因为栈结构的特性,永远都是先处理栈顶的第一条指令,因此大部分指令都是零地址指令&…

走进三态股份,睿观与三态股份的预防商标侵权合作

三态股份是去年上市的大型跨境电商卖家(深交所股票代码:301558),致力于通过最新的科技,将国内的优质供应链输送到全球各地。 三态股份每年上新的产品超十万级,可却遇到了侵权违规的巨大挑战:如…

探索k8s集群的配置资源(secret和configmap)

目录 ConfigMap ConfigMap(主要是将配置目录或者文件挂载到k8s里面使用) 与Secret类似,区别在于ConfigMap保存的是不需要加密配置的信息。(例如:配置文件) ConfigMap 功能在 Kubernetes1.2 版本中引入&…

谈AI 时代网站的未来趋势

以大语言模型为代表的AI 技术迅速发展,将会影响原有信息网络的方式。其中一个明显的趋势是通过chatGPT 对话代替搜索引擎和浏览器来获取信息。 互联网时代,主要是通过网站(website)提供信息。网站主要为人类阅读的方式构建的。主要…

鸿蒙轻内核M核源码分析系列十九 Musl LibC

LiteOS-M内核LibC实现有2种,可以根据需求进行二选一,分别是musl libC和newlibc。本文先学习下Musl LibC的实现代码。文中所涉及的源码,均可以在开源站点 https://gitee.com/openharmony/kernel_liteos_m 获取。LiteOS-M内核提供了和内核相关的…

范闲获取到庆帝与神庙的往来信件,用AES进行破解

关注微信公众号 数据分析螺丝钉 免费领取价值万元的python/java/商业分析/数据结构与算法学习资料 在《庆余年2》中,范闲与庆帝和神庙之间的权谋斗争愈演愈烈。一次偶然的机会,范闲从庆帝的密室中获取到几封与神庙往来的密信。然而,这封信件…

jvm学习笔记(二) ----- 垃圾回收

GC 一、判定对象是否是垃圾1.引用计数法2.可达性分析算法 二、垃圾回收算法1.标记清除2.标记整理3. 复制4. 分代垃圾回收1.尝试在伊甸园分配2.大对象直接晋升至老年代3.多次存活的对象4.老年代连续空间不足,触发 Full GC 链接: jvm学习笔记(一) ----- JAVA 内存 链接…

20240607每日通信--------VUE3前端引入scoket-io,后端引入Netty-SocketIO,我成功了,希望一起交流沟通

无语 前置: VUE3 前端集成scoket-io socket.io-client Sringboot 3.0JDK17集成Netty-SocketIO Netty-SocketIO 失败原因一: 前期决定要写demo时候,单独了解了,后端引入Netty-SocketIO注意事项,详见我先头写的博客 前…

别让你的品牌失去声音,品牌策划如何成为你的王牌?

品牌策划可不仅仅是一个简单的概念,它是一门真正的艺术和科学。 它涉及到在确立品牌定位之后,进行一系列精心设计的传播和推广活动,从而塑造和管理品牌,让品牌价值达到最大化。 在这个竞争激烈的市场中,想要让你的品…

一篇文章带你搞懂C++引用(建议收藏)

引用 6.1 引用概念 引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。 比如:李逵,在家称为"铁牛",江湖上人称&quo…

30、matlab现代滤波:维纳滤波/LMS算法滤波/小波变换滤波

1、信号1和信号2的维纳滤波 实现代码 N 2000; %采样点数 Fs 2000; %采样频率 t 0:1 / Fs:1 - 1 / Fs; %时间序列 Signal1 sin(2*pi*20* t) sin(2*pi*40* t) sin(2*pi*60* t); Signal2[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1…

删除目录

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 删除目录可以通过使用os模块提供的rmdir()函数实现。通过rmdir()函数删除目录时,只有当要删除的目录为空时才起作用。rmdir()函数的基本语…

升级最新版openssh-9.7p1及openssl-1.1.1h详细步骤及常见问题总结

近期因为openssh相继被漏洞扫描工具扫出存在漏洞,所以考虑升级操作系统中的openssh和openssl为最新版本,来避免漏洞风险。期间的升级过程及遇到的疑难问题,特此记录下来,供有需要的人参考。 本次目标是升级 openssh 为 9.7p1 版本…

算法金 | 不愧是腾讯,问基础巨细节 。。。

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 最近,有读者参加了腾讯算法岗位的面试,面试着重考察了基础知识,并且提问非常详细。 特别是关于Ada…

Linux守护进程揭秘-无声无息运行在后台

在Linux系统中,有一些特殊的进程悄无声息地运行在后台,如同坚实的基石支撑着整个系统的运转。它们就是众所周知的守护进程(Daemon)。本文将为你揭开守护进程的神秘面纱,探讨它们的本质特征、创建过程,以及如何重定向它们的输入输出…

vue2实现将el-table表格数据导出为长图片

方法一、 el-table数据导出为长图片 将el-table数据导出为图片不是一个直接的功能,但可以通过以下步骤实现: 使用html2canvas库将表格区域转换为画布(canvas)。 使用canvas的toDataURL方法将画布导出为图片格式(例如PNG)。 创建…

人工智能时代,想转型AI产品经理?这篇文章你不应该错过

前言 在这个日新月异的智能时代,人工智能(AI)已经从未来概念转变为推动各行各业发展的核心驱动力。作为连接技术与市场的桥梁,AI产品经理的角色愈发关键,他们不仅是技术的翻译者,更是创新的推动者。如果你…

ORA-12519 TNS:no appropriate service handler found

问题描述 jdbc连接Oracle失败,报错日志如下: Listener refused the connection with the following error: ORA-12519, TNS:no appropriate service handler found The Connection descriptor used by the client was:192.9.100.217:7001:wcm 问题分…

重新学习STM32(2)NVIC

概念简介 NVIC,即嵌套向量中断控制器,控制着中断相关的功能,是内核里面的一个外设。 中断在单片机编程中的作用是使单片机能及时响应需要立即处理的事件,但是这些事件也分紧急和非紧急,因此需要优先级来区分。…

泛微开发修炼之旅--10基于Ecology实现附件上传,并将上传后的文件id存入表单附件控件中的示例及源码

文章链接:泛微开发修炼之旅--10基于Ecology实现附件上传,并将上传后的文件id存入表单附件控件中的示例及源码