使用迭代最近点 (ICP) 算法在 Open3D 中对齐点云

news2024/11/17 17:38:34

一、Open3D 简介及其功能

   Open3D 是一个现代库,它提供了用于处理 3D 数据的各种工具。在其功能中,它提供了高效的数据结构和算法来处理点云、网格等,使其成为在计算机视觉、机器人和图形领域工作的研究人员和从业人员的不错选择。Open3D 的特点之一是它实现了迭代最近点 (ICP) 算法,该算法用于模型对齐任务。

二、Open3D 和 ICP 入门

   迭代最近点 (ICP) 算法是用于对齐 3D 模型的基本技术。它的工作原理是迭代最小化两个点云或一个点云与 3D 模型之间的距离。该算法假设两个点云在不同的方向和/或位置表示相同的对象或场景。ICP 对于机器人和增强现实中的对象识别、定位和映射等任务特别有用。

   要在 Open3D 中使用 ICP,您首先需要安装库。您可以使用 pip 执行此操作:

pip install open3d

   Open3D 在其示例数据集中包含许多模型。安装后,我们可以导入 Open3D 并加载 Stanford Bunny 模型,这是一个用于测试 3D 算法的标准数据集:

import open3d as o3d 
# Load the Bunny mesh
bunny = o3d.data.BunnyMesh()
mesh = o3d.io.read_triangle_mesh(bunny.path)

   接下来,为了使 ICP 算法正常工作,有必要像这样计算顶点法线:

mesh.compute_vertex_normals()

   接下来,放下样本,这样我们就没有那么多点可以拟合了:

# Sample points from the mesh
pcd = mesh.sample_points_poisson_disk(number_of_points=1000)

   要在 Plotly 中将点云可视化为 3D 散点图,可以将 Open3D 点云转换为 NumPy 数组以进行 3D 绘图:

import plotly.graph_objects as go
import numpy as np

# Convert Open3D point cloud to NumPy array
xyz = np.asarray(pcd.points)

# Create a 3D scatter plot
scatter = go.Scatter3d(x=xyz[:, 0], y=xyz[:, 1], z=xyz[:, 2], mode='markers', marker=dict(size=1))
fig = go.Figure(data=[scatter])
fig.show()

斯坦福兔子点云
在这里插入图片描述

三、旋转模型并查找旋转矩阵

   为了演示 ICP,让我们创建一个 Bunny 模型的旋转版本,方法是将原始模型旋转 45 度,然后使用 ICP 找到原始模型和旋转模型之间的旋转矩阵:

# Apply an arbitrary rotation to the original point cloud
R = o3d.geometry.get_rotation_matrix_from_xyz((np.pi / 4, np.pi / 4, np.pi / 4))
rotated_pcd = pcd.rotate(R, center=(0, 0, 0))

查看旋转的兔子,确保一切正常:

# Convert Open3D point cloud to NumPy array
xyz_rot = np.asarray(rotated_pcd.points)

# Create a 3D scatter plot
scatter = go.Scatter3d(x=xyz_rot[:, 0], y=xyz_rot[:, 1], z=xyz[:, 2], mode='markers', marker=dict(size=1.0))
fig = go.Figure(data=[scatter])
fig.show()

在这里插入图片描述
斯坦福兔子旋转 45 度

   现在,我们使用 ICP 来查找原始模型和旋转模型之间的转换矩阵。

# Use ICP to find the rotation
threshold = 0.02  # Distance threshold
trans_init = np.identity(4)  # Initial guess (identity matrix)
trans_init[:3, :3] = R  # We set the initial rotation to the known rotation
reg_p2p = o3d.pipelines.registration.registration_icp(
    source=rotated_pcd, target=pcd, max_correspondence_distance=threshold,
    init=trans_init
)

# Extract the rotation matrix from the transformation matrix
estimated_rotation_matrix = reg_p2p.transformation[:3, :3]
rotation_matrix = reg_p2p.transformation[:3, :3]
print("Estimated rotation matrix:")
print(rotation_matrix)

   ​ICP发现的原始模型和旋转模型之间的旋转矩阵
在这里插入图片描述

四、验证旋转

   为了验证旋转,我们可以将估计旋转矩阵的逆函数应用于旋转模型,并将其与原始模型进行比较。通过取点之间的均方误差 (MSE),我们可以检查旋转的模型是否在指定的公差范围内恢复到其原始对齐方式:

# Extract the rotation matrix from the transformation matrix
estimated_rotation_matrix = reg_p2p.transformation[:3, :3]

# Apply the inverse of the estimated rotation to the rotated point cloud
inverse_rotation_matrix = np.linalg.inv(estimated_rotation_matrix)
rotated_back_pcd = rotated_pcd.rotate(inverse_rotation_matrix, center=(0, 0, 0))

# Compare the original point cloud to the one rotated back to its original state
# We can use the mean squared error (MSE) between corresponding points as a metric
original_points = np.asarray(pcd.points)
rotated_back_points = np.asarray(rotated_back_pcd.points)
mse = np.mean(np.linalg.norm(original_points - rotated_back_points, axis=1) ** 2)

# Check if the MSE is below a certain tolerance
tolerance = 1e-6
if mse < tolerance:
    print(f"Test passed: MSE = {mse}")
else:
    print(f"Test failed: MSE = {mse}")

   假设一切顺利,您应该会看到测试通过的结果,表明点云已重新对齐。

在这里插入图片描述
   显示 ICP 算法的演示到此结束:

   1 在两个未对齐的模型之间查找旋转,以及
   2 使用这些结果将旋转的模型重新对齐回原始方向。

五、使用 ICP 的局限性

   虽然 ICP 是用于模型对齐的强大工具,但它也有其局限性:

  •    ICP 需要良好的初始猜测才能收敛到正确的解决方案,尤其是对于具有大旋转或平移的点云。
  •    该算法可能在对称或无特征的表面上遇到困难,在这些表面上建立正确的对应关系具有挑战性。
  •    异常值和噪声会显著影响 ICP 的性能,从而导致不正确的对齐方式。
  •    ICP 不处理点云之间的尺度差异,因为它假定点云已经处于相同的尺度。
       尽管存在这些局限性,但 ICP 仍然是 3D 数据处理中广泛使用的算法,Open3D 提供了一个用户友好的界面,可将 ICP 应用于各种对齐问题。通过仔细的预处理和参数调整,ICP 可以成为对齐 3D 模型的可靠解决方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1799838.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络简史-基于图论的网络

先看一幅图&#xff1a; 如图&#xff0c;我们对类似 crossbar&#xff0c;banyan tree&#xff0c;b-tree&#xff0c;10-tree&#xff0c;256-tree&#xff0c;甚至 dcn fat-tree 等 “规则拓扑” 网络相当熟悉。规则拓扑网络中&#xff0c;地址信息被编码到拓扑本身&#…

继续引爆!5天连出2个里程碑成果,离子阱量子计算机嗨翻天!

5月30日&#xff0c;清华大学的一项成果被Nature审稿人称为“量子模拟领域的巨大进步”&#xff01;“值得关注的里程碑”&#xff01;该成果就是中国科学院院士、清华大学交叉信息研究院教授段路明带领研究组在量子模拟计算领域取得的重要突破。段路明研究组首次实现512离子二…

Java使用XWPFTemplate将word填充数据,并转pdf

poi-tl poi-tl&#xff08;poi template language&#xff09;是基于Apache POI的Word模板引擎。纯Java组件&#xff0c;跨平台&#xff0c;代码短小精悍&#xff0c;通过插件机制使其具有高度扩展性。 主要处理区域有这么几个模块: 依赖 <dependency><groupId>…

【UE5教程】使用蓝图显示鼠标

首先&#xff0c;在您的项目中创建一个新的蓝图类&#xff0c;继承自PlayerController。在蓝图编辑器中&#xff0c;找到Event BeginPlay节点&#xff0c;并从它引出一条线。添加Set Show Mouse Cursor节点&#xff0c;勾选Visible&#xff0c;以确保鼠标在游戏开始时可见。 鼠…

flask_sqlalchemy时间缓存导致datetime.now()时间不变问题

问题是这样的&#xff0c;项目在本地没什么问题&#xff0c;但是部署到服务器过一阵子发现&#xff0c;这个时间会在某一刻定死不变。 重启uwsgi后&#xff0c;发现第一条数据更新到了目前最新时间&#xff0c;过了一会儿再次发送也变了时间&#xff0c;但是再过几分钟再发就会…

一句话说清HDMI ARC eARC功能和区别

HDMI&#xff1a; 高清多媒体接口&#xff0c;主要用于传输高清音视频信号&#xff0c;High Definition Multimedia Interface。 ARC: 音频回传通道&#xff0c;Audio Return Channel eARC: 增强型音频回传通道&#xff0c;第一个E是增强的意思&#xff0c;Enhanced Audio…

超过20W个高质量组件的开源PCB库

项目介绍 Celestial Altium Library是由Altium行业专家Mark Harris创建的一个庞大的免费开源数据库库&#xff0c;专为Altium Designer而设计&#xff0c;库中包含超过20万个优质组件 . 特点 高质量数据&#xff1a;Celestial Altium Library注重数据的质量&#xff0c;用户可…

聊聊二叉堆、红黑树、时间轮在定时任务中的应用

定时任务作为常用的一种调度方式&#xff0c;在各大系统得到了广泛的应用。 笔者也曾写过两篇关于定时任务框架介绍的文章&#xff1a; 《介绍一下,spring cloud下的另一种定时任务解决方案》《四叉堆在GO中的应用-定时任务timer》 之前都是以如何使用为主&#xff0c;这次从…

Dokcer 基础使用 (4) 网络管理

文章目录 Docker 网络管理需求Docker 网络架构认识Docker 常见网络类型1. bridge 网络2. host 网络3. container 网络4. none 网络5. overlay 网络 Docker 网路基础指令Docker 网络管理实操 其他相关链接 Docker 基础使用(0&#xff09;基础认识 Docker 基础使用(1&#xff09;…

Android无障碍服务

Hi I’m Shendi Android无障碍服务 最近想制作一个记录点击操作并重复播放的工具&#xff0c;用以解放双手&#xff0c;因现在的Android高版本基本上难以Root&#xff0c;所以选择了使用无障碍来实现&#xff0c;在这里记录下来。 Android无障碍 可参考文档&#xff1a;https:…

【MySQL】sql语句之库操作

序言 在上篇文章学习当中&#xff0c;我们认识了数据库的相关概念&#xff0c;以及MySQL的框架和基本使用等内容&#xff0c;总之对数据库有了一个大致的认识&#xff0c;那么本篇文章将开始关于sql语句的学习&#xff0c;本文主要是关于库的属性和操作的内容&#xff0c;简单可…

DOS 操作系统

DOS 介绍 DOS&#xff1a;disk operating system&#xff0c;磁盘操作系统。 中国DOS联盟下载 MS-DOS 7.10完整安装版&#xff08;含图形安装程序&#xff09; DOS 环境下的操作 输入部分内容后按下 Tab 可以快速自动补全。 按住 Ctrl 键可以用鼠标滚轮改变字号大小。 DO…

如何在virtualbox上安装Linux系统(centerOS)

提示&#xff1a;共同学习 注意&#xff1a;一定要在BIOS中的虚拟化打开。 文章目录 第一步&#xff1a; 第一步&#xff1a; 启动 、显示开启 centos基础安装 ​ ​

【传知代码】基于曲率的图重新布线(论文复现)

前言&#xff1a;在图形处理中&#xff0c;一个至关重要的问题是图形的重新布线&#xff0c;即在不改变图形基本结构的前提下&#xff0c;通过调整节点间的连接关系&#xff0c;使图形具有更好的性质&#xff0c;如更低的复杂度、更高的可视化效果或更强的鲁棒性。传统的图形重…

暂停系统更新

电脑左下角搜索注册表编辑器 计算机\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsUpdate\UX\Settings 找到这个目录 打开FlightSettingsMaxPauseDays&#xff0c;没找到的话就创建一个同名文件夹然后选择10进制填入3550​​​​​​​ 最后进入系统暂停更新界面选择最下面…

[C/C++]_[初级]_[在Windows和macOS平台上导出动态库的一些思考]

场景 最近看了《COM本质论》里关于如何设计基于抽象基类作为二进制接口,把编译器和链接器的实现隐藏在这个二进制接口中,从而使用该DLL时不需要重新编译。在编译出C接口时,发现接口名直接是函数名,比如BindNativePort,怎么不是_BindNativePort?说明 VC++导出的函数默认是使…

Day49 动态规划part08

LC139单词拆分(未掌握) 未掌握分析&#xff1a;将字符串s中的各个字符看成是背包&#xff0c;思考成了多重背包问题单词就是物品&#xff0c;字符串s就是背包&#xff0c;单词能否组成字符串s&#xff0c;就是问物品能不能把背包装满。拆分时可以重复使用字典中的单词&#xf…

缓存方法返回值

1. 业务需求 前端用户查询数据时,数据查询缓慢耗费时间; 基于缓存中间件实现缓存方法返回值:实现流程用户第一次查询时在数据库查询,并将查询的返回值存储在缓存中间件中,在缓存有效期内前端用户再次查询时,从缓存中间件缓存获取 2. 基于Redis实现 参考1 2.1 简单实现 引入…

访问成员变量(反射)

文章目录 前言一、访问成员变量的方法二、Field类 1.常用方法2.实操展示总结 前言 为了实现随时随地调用某个类的某个成员变量&#xff0c;我们可以通过反射的Field类进行调用。这其中需要我们获取该类的Class对象&#xff0c;再调用Field类的相关方法&#xff0c;实时地灵活地…

虚拟机与windows文件同步

如果上图中不能设置&#xff0c;则在虚拟机mnt文件夹执行以下命令&#xff1a;