【传知代码】基于曲率的图重新布线(论文复现)

news2024/11/17 19:42:38

前言:在图形处理中,一个至关重要的问题是图形的重新布线,即在不改变图形基本结构的前提下,通过调整节点间的连接关系,使图形具有更好的性质,如更低的复杂度、更高的可视化效果或更强的鲁棒性。传统的图形重新布线方法往往依赖于直观的经验或简单的启发式算法,难以适应复杂多变的应用场景,近年来,基于曲率的图重新布线技术应运而生,为图形优化领域带来了新的曙光。与传统的方法相比,基于曲率的图重新布线技术更加注重图形局部的几何特性,通过计算节点的曲率来指导重新布线的过程。

本文所涉及所有资源均在传知代码平台可获取

目录

概述

演示效果

核心代码

写在最后


概述

        大部分的图神经网络(Graph Neural Networks GNN)采用消息传递模式,在这种模式下,节点的特性会在输入的图上进行传递。近期的科学研究揭示,来自遥远节点的信息丢失确实是影响依赖于远程交互任务的消息传输效率的一个关键因素。这种限制通常被命名为“过度挤压”(Over-squashing)。图中每个结点的k跳邻居数量会随着k的增加而指数级增加,这导致远距离结点的信息很难被压缩到固定大小的结点特征中,从而造成信息的丢失,这是过度挤压的原因,这里参考了一下这篇论文,地址 具体如下:

        这篇文章为我们提供了GNN中的过度挤压现象的详细描述,并探讨了它是如何从图表中的瓶颈问题中产生的。因此,本研究提出了一种创新的基于边的组合曲率方法,并成功证实了负曲率边是引发过度挤压问题的根本原因。此外,本文还介绍了一种利用曲率进行图重现布线的策略,旨在减轻过度挤压的问题,如下图所示,上图:曲面上曲率的演变可能会减少瓶颈。下图:本文展示了如何在图上做同样的事情来提高GNN的性能。蓝色代表负曲率;红色代表正曲率:

接下来对本次论文讲述的核心算法进行如下一个简单的讲解:

1)黎曼几何中的一个自然对象是里奇曲率(Ricci curvature),这是一种决定测地线色散的双线性形式,即从“相同”速度的附近点开始的测地线是否保持平行(欧几里得空间)、收敛(球面空间)或发散(双曲空间)。

2)算法在每次迭代中都会添加一条边来支持图中最负曲率的边,然后移除最正曲率的边。

3)要求k∈B1(i),l∈B1(j)k∈B1​(i),l∈B1​(j)是为了确保我们在最负曲率的边i∼ji∼j周围添加额外的3-cycle或4-cycle。这是一个局部修改。

4)原始输入图和重新布线图之间的图编辑距离以max number of iterations的2倍为界。

5)temperatureτ>0τ>0决定了添加边的随机程度,τ=∞τ=∞表示总是添加最佳边。

6)移除曲率最大的边是为了平衡曲率和结点的度的分布。

7)使用Balanced Forman curvature计算Ric(i,j)Ric(i,j)

8)optimal Ric upper-boundC+C+用于防止算法使得曲率分布负偏斜。C+=∞C+=∞表示不移除任何边。

如下图所示:

演示效果

本次代码支持Cora, Citeseer, Pubmed, Cornell, Texas, Wisconsin 脚本自动下载,如不能请参考geom-gcn ,这里不同数据集的配置文件位于./configs/。运行之前需要修改数据集根目录和输出目录:

output_dir: $OUTPUT_DIR$
data:
  root: $DATA_ROOT$

测试集和训练集可以采用下面的方式进行:

# train on train data splits
python train.py --config-file configs/*.yaml
# test on val and test data splits
python eval.py --config-file configs/*.yaml
// 或
search_dir=configs
for file in "$search_dir"/*
do
    python train.py --config-file $file
    python eval.py --config-file $file
done

运行结果可以参考下面的方式,运行日志、模型权重、重新布线结果保存在$OUTPUT_DIR/$DATASET_NAME/ 测试结果(accuracy)保存在./result.csv:

核心代码

下面这段代码实现了对图数据进行流形学习的过程,其中使用了 Ricci 曲率作为度量距离的方法。具体来说,代码实现了一个基于 Ricci 曲率的图形变形算法,即 SDRF(Spectral Deformation and Ricci Flow)算法,该算法主要包含以下步骤:

1)将 Pytorch Geometric 中的数据类型 Data 转换为 NetworkX 中的数据类型 DiGraph,方便后续的加边、减边操作。

2)获取图的邻接矩阵和边的个数。

3)进入图的加边、减边循环过程,其中 max_iterations 为最大迭代次数:

4)将 NetworkX 中的数据类型 DiGraph 转换为 Pytorch Geometric 中的数据类型 Data,并返回。

        其中,BFC 算法是一种计算曲率的方法,用于计算 Ricci 曲率矩阵。具体来说,它通过计算形式曲率和平衡形式曲率之间的差异来计算 Ricci 曲率。在算法中,balanced_forman_curvature 函数用于计算 Ricci 曲率矩阵,balanced_forman_post_delta 函数用于计算边添加之后对 Ricci 曲率的提升程度。

SDRF 算法是一种流形学习算法,用于在图数据中计算距离和相似度。通过迭代加边、减边的方法,SDRF 算法可以将图数据进行形变,从而使得距离和相似度更加符合实际情况,代码如下:
 

def sdrf(data, max_iterations=10, remove_edges=True, remove_bound=0.5, tau=1.0, undirected=True):
    # 1. 将torch_geometric.data.Data实例转化为networkx.DiGraph实例,方便后续加边、减边操作
    G = to_networkx(data)
    if undirected:
        G = G.to_undirected()
    
    # 2. 获取图信息(邻接矩阵,边的个数)
    edge_index = data.edge_index
    if undirected:
        edge_index = to_undirected(edge_index)
    A = to_dense_adj(remove_self_loops(edge_index)[0])[0]  # 邻接矩阵
    A = A.cuda()
    N = A.shape[0]  # 边的个数

    C = torch.zeros(N, N).cuda()  # 初始化Ricci曲率矩阵,即Ric(i, j)

    # 3. 进入图的加边、减边循环过程,其中max_iterations为最大迭代次数
    for x in range(max_iterations):
        can_add = True

        # 3.1 根据BFC算法更新Ricci曲率矩阵
        balanced_forman_curvature(A, C=C)

        ix_min = C.argmin().item()
        x = ix_min // N
        y = ix_min % N

        # 3.2 计算可加边的候选集candidates
        if undirected:
            x_neighbors = list(G.neighbors(x)) + [x]
            y_neighbors = list(G.neighbors(y)) + [y]
        else:
            x_neighbors = list(G.successors(x)) + [x]
            y_neighbors = list(G.predecessors(y)) + [y]
        candidates = []
        for i in x_neighbors:
            for j in y_neighbors:
                if (i != j) and (not G.has_edge(i, j)):
                    candidates.append((i, j))

        # 3.3 根据边添加之后对Ricci曲率的提升程度,从候选集中选择边k~l进行添加
        if len(candidates):
            D = balanced_forman_post_delta(A, x, y, x_neighbors, y_neighbors)
            improvements = []
            for i, j in candidates:
                improvements.append((D - C[x, y])[x_neighbors.index(i), y_neighbors.index(j)].item())

            k, l = candidates[np.random.choice(range(len(candidates)), p=softmax(np.array(improvements), tau=tau))]
            G.add_edge(k, l)  # 添加边
            if undirected:
                A[k, l] = A[l, k] = 1
            else:
                A[k, l] = 1
        else:
            can_add = False
            if not remove_edges:
                break

        # 3.4 移除具有最大Ricci曲率的边,其中remove_bound为曲率最大上界
        if remove_edges:
            ix_max = C.argmax().item()
            x = ix_max // N
            y = ix_max % N
            if C[x, y] > remove_bound:
                G.remove_edge(x, y)  # 移除边
                if undirected:
                    A[x, y] = A[y, x] = 0
                else:
                    A[x, y] = 0
            else:
                if can_add is False:
                    break

    # 4. 将networkx.DiGraph实例转化为torch_geometric.data.Data实例,返回
    return from_networkx(G)

写在最后

        在探索图形优化技术的道路上,基于曲率的图重新布线技术以其独特的视角和强大的能力,为我们揭示了图形处理领域的新可能。通过对节点曲率的精确计算和合理利用,这一技术不仅能够保持图形的整体结构稳定,更能在细节上精雕细琢,使图形展现出更加平滑、美观的视觉效果。

        回顾我们所探讨的内容,基于曲率的图重新布线技术凭借其先进性和实用性,已经在多个领域展现出了巨大的应用潜力。无论是社交网络分析中的用户关系优化,还是城市规划中的道路网络设计,甚至是生物科学中的蛋白质交互图研究,这一技术都为我们提供了全新的解决方案,随着技术的不断进步和应用领域的不断拓展,基于曲率的图重新布线技术将会迎来更加广阔的发展空间。我们可以预见,未来的图形优化将更加注重局部细节的优化和整体结构的稳定性,而基于曲率的图重新布线技术正是这一趋势的引领者。

详细复现过程的项目源码、数据和预训练好的模型可从该文章下方附件获取。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1799817.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

暂停系统更新

电脑左下角搜索注册表编辑器 计算机\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsUpdate\UX\Settings 找到这个目录 打开FlightSettingsMaxPauseDays,没找到的话就创建一个同名文件夹然后选择10进制填入3550​​​​​​​ 最后进入系统暂停更新界面选择最下面…

[C/C++]_[初级]_[在Windows和macOS平台上导出动态库的一些思考]

场景 最近看了《COM本质论》里关于如何设计基于抽象基类作为二进制接口,把编译器和链接器的实现隐藏在这个二进制接口中,从而使用该DLL时不需要重新编译。在编译出C接口时,发现接口名直接是函数名,比如BindNativePort,怎么不是_BindNativePort?说明 VC++导出的函数默认是使…

Day49 动态规划part08

LC139单词拆分(未掌握) 未掌握分析:将字符串s中的各个字符看成是背包,思考成了多重背包问题单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。拆分时可以重复使用字典中的单词&#xf…

缓存方法返回值

1. 业务需求 前端用户查询数据时,数据查询缓慢耗费时间; 基于缓存中间件实现缓存方法返回值:实现流程用户第一次查询时在数据库查询,并将查询的返回值存储在缓存中间件中,在缓存有效期内前端用户再次查询时,从缓存中间件缓存获取 2. 基于Redis实现 参考1 2.1 简单实现 引入…

访问成员变量(反射)

文章目录 前言一、访问成员变量的方法二、Field类 1.常用方法2.实操展示总结 前言 为了实现随时随地调用某个类的某个成员变量,我们可以通过反射的Field类进行调用。这其中需要我们获取该类的Class对象,再调用Field类的相关方法,实时地灵活地…

虚拟机与windows文件同步

如果上图中不能设置,则在虚拟机mnt文件夹执行以下命令:

【Vue】作用域插槽

插槽分类 默认插槽:组件内定制一处结构 具名插槽:组件内定制多处结构 插槽只有两种,作用域插槽不属于插槽的一种分类。作用域插槽只是插槽的一个传参语法 作用: 定义slot 插槽的同时, 是可以传值的。给 插槽 上可以 绑定数据&a…

FL Studio21.2.9中文破解版水果软件安装包附带激活码注册码

音乐制作软件,对很多人而言,是一个“高门槛”的存在。它既需要专业的音乐知识,也需要复杂的操作技巧。 「FL Studio 21中文版马丁版下载」,复制整段内容,打开最新版「夸克APP」即可获取链接: https://pan…

Qt QProcess调用外部程序,并实时打印输出信息

Qt QProcess调用外部程序,并实时打印输出信息 引言一、源码分析1. 外部程序 - 被QProcess调用启动2. QProcessDemo - 调用外部程序,并实时打印输出信息 二、参考链接 引言 QProcess是Qt框架中的一个类,用于处理外部进程。它提供了一种直接与操…

RabbitMQ docker安装及使用

1. docker安装RabbitMQ docker下载及配置环境 docker pull rabbitmq:management # 创建用于挂载的目录 mkdir -p /home/docker/rabbitmq/{data,conf,log} # 创建完成之后要对所创建文件授权权限,都设置成777 否则在启动容器的时候容易失败 chmod -R 777 /home/doc…

CorelDRAW2024发布更新啦!设计师们的得力助手

在数字化的今天,视觉设计已经成为我们生活中不可或缺的一部分。从手机界面到广告海报,从网页布局到包装设计,每一个细节都离不开设计师们的专业与创意。然而,面对日益增长的设计需求和不断提升的审美标准,许多设计师开…

贝锐花生壳DDNS:远程访问数据库,仅需简单3步

在当今数字化时代,数据的远程访问和管理变得至关重要。无论是企业还是个人开发者,都需要一种简单、安全的方式来远程访问和管理本地部署的数据库,如MySQL、PostgreSQL、MongoDB等。贝锐花生壳DDNS服务提供了一个完美的解决方案,通…

【Vue】组件的存放目录问题

注意: .vue文件 本质无区别 组件分类 .vue文件分为2类,都是 .vue文件(本质无区别) 页面组件 (配置路由规则时使用的组件)复用组件(多个组件中都使用到的组件) 存放目录 分类开来的…

fastjson 泛型转换问题(详解)

系列文章目录 附属文章一:fastjson TypeReference 泛型类型(详解) 文章目录 系列文章目录前言一、代码演示1. 不存在泛型转换2. 存在泛型转换3. 存在泛型集合转换 二、原因分析三、解决方案1. 方案1:重新执行泛型的 json 转换2. …

Java使用GDAL来解析KMZ及KML实战

目录 前言 一、在GQIS中浏览数据 1、关于空间参考 2、属性表格 二、GDAL的相关驱动及解析实战 1、GDAL中的KMZ驱动 2、GDAL实际解析 三、数据解析成果 1、KML解析结果 2、KMZ文件入库 四、总结 前言 在前面的博客中讲过纯Java实现Google地图的KMZ和KML文件的解析&…

java第二十一课 —— 快捷键,包,访问修饰符

IDEA 快捷键 删除行:Ctrl Y复制行:Ctrl D补全代码:Alt /添加取消注释:Ctrl /导入该行需要的类:Alt Enter快速格式化代码:Ctrl Shift L快速运行程序:Ctrl Shift F10生成构造器&#xf…

Python实现调用并执行Linux系统命令

😎 作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主。 🤓 同时欢迎大家关注其他专栏,我将分享Web前后端开发、人工智能、机器学习、深…

Oracle数据库设计规范指南(Word原件)

方便业务功能实现、业务功能扩展;方便设计开发、增强系统的稳定性和可维护性;保证数据完整性和准确性;提高数据存储效率,在满足业务需求的前提下,使时间开销和空间开销达到优化平衡。资料获取:本文本个人名…

tmux工具使用鼠标滚动窗口及分屏命令

tmux工具使用鼠标滚动窗口及分屏命令 1. tmux source配置文件 长期生效2. 临时生效3. 实现分屏 1. tmux source配置文件 长期生效 vim ~/.tmux.conf echo "set -g mouse on" > ~/.tmux.conf tmux source-file ~/.tmux.conf2. 临时生效 1. 进入到tmux命令窗口 2.…

【echarts】如何制作,横坐标每个日期点如何对应一条竖线的图,以及 markline设置后不生效问题

图的样式如下: 在线演示 每一个日期,对应一条竖线展示。 echarts配置内容: 在线演示 option {xAxis: {type: category,data: [20240601, 20240602, 20240603, 20240604, 20240605, 20240606, 20240607] // X轴数据},yAxis: {type: valu…