算法:前缀和题目练习

news2024/11/18 9:29:46

目录

题目一:一维前缀和[模版]

题目二:二维前缀和[模版]

题目三:寻找数组的中心下标

题目四:除自身以外数组的乘积

题目五:和为K的子数组

题目六:和可被K整除的子数组

题目七:连续数组

题目八:矩阵区域和


题目一:一维前缀和[模版]

示例1

输入:

3 2
1 2 4
1 2
2 3

输出:

3
6

题目要求是:给一个数组,需要注意的是:下标是从1开始

查询时给下标l和r,返回下标从l到下标为r的元素的和

也就是:如果数组arr是[2, 4, 6],那么查询时如果是:1  2,那就返回6(2+4),如果是2  3,就返回10(4+6),如果是1 3,就返回12(2+4+6)

解法一:暴力解法

暴力解法很简单,即就是题目需要求哪段区间的和,那我就从这个区间的开始一直加到这个区间的结尾即可

时间复杂度:O(N*q)

假设每次询问的查询范围都是从头找到尾,所以是O(N)的,而q次询问,所以是O(q),嵌套起来就是O(N*q)

而这道题N和q的范围都是从1到10^5的,最差的情况,时间复杂度是10^10,是绝对会超时的


解法二:前缀和

前缀和:快速求出数组中某一个连续区间的和

这里的快速指查找时间复杂度为O(1),但是预处理一个前缀和数组的时间复杂度为O(N),所以使用前缀和后,时间复杂度变为O(N) + O(q)了,之所以不是相乘是因为这两个过程并没有嵌套在一起进行

要想使用前缀和,分为下面两步:

①预处理出来一个前缀和数组

数组有几个元素,前缀和数组dp就有几个元素

dp[i]就表示[1, i]区间内所有元素的和

也就是如果数组arr是[1, 2, 3],那么dp数组就是[1, 3, 6]

这里可以优化的一点是:每次算前i个数的和,不需要从1开始加,从i-1开始加即可,因为i-1位置的元素就表示前i-1个元素的和

所以dp[i]的公式是:dp[i] = dp[i+1] + arr[i]

②使用前缀和数组

使用前缀和数组也很简单:

即如果查找的是3~5区间的和,那么只需要使用dp[5] - dp[2],即就是下标为1~5的和,减去1~2的和,算出来就是3~5的和了

即就是查找[l, r]区间的和,则dp[r] - dp[l - 1]即可

下面讲个细节问题,为什么下标要从1开始计数

如果计算的是计算的是前两个元素的和,公式就变为了:dp[2] - dp[-1],这就会导致越界访问了,所以这种情况还需要处理边界情况,麻烦一些

而如果下标是从1开始的,那么如果计算的是前两个元素的和就是:dp[2] - dp[0],我们只需将dp数组中dp[0]的值置为0就能完美解决这个问题

代码如下:

#include <iostream>
#include <vector>
using namespace std;

int main() {
    int n = 0,q = 0;
    cin >> n >> q;//读入数据
    vector<int> arr(n+1);
    vector<long long> dp(n+1);//防止溢出
    //预处理出来一个前缀和数组
    for(int i = 1; i < arr.size(); i++)
    {
        cin >> arr[i];
        dp[i] = dp[i-1] + arr[i];
    }
    //使用前缀和数组
    int l = 0, r = 0;
    while(q--)
    {
        cin >> l >> r;
        cout << dp[r] - dp[l-1] << endl;
    }
    return 0;
}

题目二:二维前缀和[模版]

示例1

输入:

3 4 3
1 2 3 4
3 2 1 0
1 5 7 8
1 1 2 2
1 1 3 3
1 2 3 4

输出:

8
25
32

上述题目一是一维的前缀和,题目二是二维的前缀和

就以示例一来说明题意:

第一行的 3 4 3,表示有一个3行4列的矩阵,查询次数是3次

3行4列的矩阵为接下来输入的3行数据,即:


最后三行就表示所查询的三次内容,前两个数字表示一个坐标,后两个数字表示一个坐标

即1 1 2 2就表示(1,1)到(2,2)的这个矩形范围所有值的和,即下图红色区域:


解法一:暴力解法

每次询问时,都给出整个区间所有元素的和,因为是m行n列q此询问,所以时间复杂度是O(m*n*q),因为每次询问最差情况都要遍历数组一遍,是O(m*q),而询问q次,是嵌套关系,所以是O(m*n*q)

当然了,在看到这个时间复杂度后,我们就很容易可以判断出来,这个时间肯定超时了,所以接下来看解法二


解法二:前缀和

同样是分为两步

①预处理出前缀和矩阵

同样重新创建一个和原始矩阵相同规模的矩阵,不同的是新矩阵dp,每一个位置dp[i, j]表示的含义是:从[1, 1]到[i, j]这个位置所有元素的和

例如下图,如果想求这个矩阵中所有元素的和,那么可以分为下面四部分:

我们加入想求[1, 1]到[i, j]位置所有元素的和,只需要求A + B + C + D即可,也就是将ABCD这四个区域的元素之和相加,但是A好求,B、C不太好求,所以可以退而求其次,求A + B和A + C的值,此时多加了一遍A,只需最后减去即可,所以:

dp[i,j] = (A + B) + (A + C) + D - A = dp[i][j-1] + dp[i-1][j] + arr[i,j] - dp[i-1][j-1]

此时求dp[i,j]的时间复杂度就是O(1)的

②使用前缀和矩阵

所以按照上面的思想,如果想要求[x1, y1] ~ [x2, y2]的区域的元素和,也就是下面的D区域:

此时求D区域,就可以整体的A+B+C+D,再减去A+B+C,但是单独的B和C不好算,所以依旧使用A+B和B+C来计算,因为多减了一次A,所以最后再加上多减的那个A即可,公式即为:

dp[x2, y2] - dp[x1-1, y2] - dp[x2, y1-1] + dp[x1-1, y1-1]

根据上图可以轻松写出

由于需要先构建m行n列前缀和数组dp,所以时间复杂度是O(m*n),又因为每次查询只需要套一个公式,所以时间复杂度为O(1),需要查询q次,所以前缀和的时间复杂度为:O(m*n) + O(q)

上述第一个公式用于预处理出前缀和矩阵,第二个公式用于使用前缀和矩阵


代码如下:

#include <iostream>
#include <vector>
using namespace std;

int main() 
{
    //输入数据
    int n = 0,m = 0,q = 0;
    cin >> n >> m >> q;
    vector<vector<int>> arr(n+1,vector<int>(m+1));
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
            cin >> arr[i][j];
    //预处理前缀和矩阵
    vector<vector<long long>> dp(n+1,vector<long long>(m+1));//long long防止溢出
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
            dp[i][j] = dp[i-1][j] + dp[i][j-1] + arr[i][j] - dp[i-1][j-1];
    //使用前缀和矩阵dp
    int x1 = 0, y1 = 0, x2 = 0, y2 = 0;
    while(q--)
    {
        cin >> x1 >> y1 >> x2 >> y2;
        cout << (dp[x2][y2]-dp[x1-1][y2]-dp[x2][y1-1]+dp[x1-1][y1-1]) << endl;
    }
    return 0;
}

题目三:寻找数组的中心下标

给你一个整数数组 nums ,请计算数组的 中心下标 

数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。

如果中心下标位于数组最左端,那么左侧数之和视为 0 ,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。

如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 -1 。

示例 1:

输入:nums = [1, 7, 3, 6, 5, 6]
输出:3
解释:
中心下标是 3 。
左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11 ,
右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,二者相等。

示例 2:

输入:nums = [1, 2, 3]
输出:-1
解释:
数组中不存在满足此条件的中心下标。

示例 3:

输入:nums = [2, 1, -1]
输出:0
解释:
中心下标是 0 。
左侧数之和 sum = 0 ,(下标 0 左侧不存在元素),
右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0 。

解法一:暴力解法

每次枚举一个位置,都去将这个位置的左边和右边的元素都累加,去比较总和是否相同,这里的暴力解法的时间复杂度是O(N^2)的

因为枚举下标是O(N),求和也是O(N),所以是时间复杂度是O(N^2)


解法二:前缀和

此题使用的依旧是前缀和的思路,与前面不同的是,此题要求中心下标的左边元素和右边元素相加的和是相同的,所以这里可以引出前缀和数组 f 和后缀和数组 g

这里的前缀和数组的定义与前面的前缀和数组的定义是不同的,并不包含当前位置的值,所以也就进一步的说明,前缀和数组只是一个思想,并不是一个固定的格式

f[i] 表示从0加到i-1位置的元素和g[i] 表示从i+1加到n-1位置的元素和

同样是分为下面的两步:

①预处理出前缀和、后缀和数组

首先我们明白,在此题中,f[i]表示 0 ~ i - 1 位置的元素的和,所以f[i-1]就是0~i-2位置的元素的和,还差一个nums[i-1],再加上即可,g[i]同理可得:
f[i] = f[i-1] + nums[i-1]
g[i] = g[i+1] + nums[i+1]

②使用前缀和、后缀和数组

在上面预处理出前缀和与后缀和数组后,只需枚举每个下标时,判断f[i]与g[i]是否相等即可,如果相等就表示该下标是数组的中心下标

下面是此题需要注意的两个细节问题:

第一、f[0]与g[n-1]都需要提前处理,因为如果不处理,f[0]的公式会出现f[-1],g[n-1]的公式会出现g[n],这两种情况都是导致越界访问

第二、预处理前缀和数组需要从左向右处理,而预处理后缀和数组则需要从后向前处理,因为前缀和数组计算时,每一个位置都需要前一个位置的值,而后缀和数组每一个位置都需要后一个位置的值


代码如下:

class Solution {
public:
    int pivotIndex(vector<int>& nums) 
    {
        int n = nums.size();
        vector<int> f(n);
        vector<int> g(n);
        //预处理前缀和数组f,从下标1开始,下标0默认值是0
        for(int i = 1; i < n; i++)
            f[i] = f[i-1] + nums[i-1];
        //预处理后缀和数组g,从下标n-2开始,下标n-1默认值是0
        for(int i = n - 2; i >= 0; i--)
            g[i] = g[i+1] + nums[i+1];
        //使用数组
        for(int i = 0; i < n; i++)
            if(f[i] == g[i]) return i;
        return -1;
    }
};

题目四:除自身以外数组的乘积

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。

题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在  32 位 整数范围内。

请 不要使用除法,且在 O(n) 时间复杂度内完成此题。

示例 1:

输入: nums = [1,2,3,4]
输出: [24,12,8,6]

示例 2:

输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]

此题题意是比较好理解的, 例如示例一,数组nums元素是1、2、3、4,返回一个数组answer,在数组answer中,每一个元素的值都是nums中除了该位置的数外,其余所有元素的乘积,如下所示:

nums元素是[1, 2, 3, 4],所以answer数组中的第一个元素值为:2*3*4=24,第二个元素值为1*3*4=12,第三个元素值为:1*2*4=8,第四个元素的值为:1*2*3=6

所以answer数组的元素就为:[24, 12, 8, 6]

解法一:暴力解法

暴力解法也很简单,依次枚举每个位置,然后再求除了该位置外的所有元素的乘积,时间复杂度是O(N^2)的

因为枚举每个位置的时间复杂度是O(N),而其中还需要嵌套一个循环,是遍历其余元素,求其余元素的乘积,时间复杂度也是O(N),所以总的时间复杂度是O(N^2)


解法二:前缀积 + 后缀积

此题同样是需要使用前缀和的思想,但是每道题的前缀和处理思路都是根据实际情况来定的,此题中需要求一个answer数组,使得该数组的每一个元素的值都是nums数组中其余元素的乘积

所以如果要求i位置的值,就需要知道 0 ~ i-1 位置的元素的乘积,以及 i+1 ~ n-1 位置的元素的乘积,所以此题实际的解法可以称之为前缀积

根据上述的描述,我们可以知道,想要得到所需的answer数组,需要 i 下标之前的前缀积和 i 下标之后的后缀积

同样是分为下面的两步:

①预处理出前缀积、后缀积数组

前缀积数组用 f 表示,后缀积数组用 g 表示

f[i] 表示[0, i-1]区间内所有元素的积,

f[i] = f[i-1] * nums[i-1]

g[i] 表示[i+1, n-1]区间内所有元素的积,

g[i] = g[i+1] * nums[i+1]

②使用前缀积、后缀积数组

由于此题所要求的是得出一个answer数组,所以只需创建出一个大小与nums相同的数组,数组中每个元素都使用 f[i] * g[i]来得出最后的值

同样这里也有需要注意的细节问题

与上一题一样,f[0] 和 g[n-1] 都有可能出现越界访问的问题

因为 f[1] = f[0] * nums[0],而f[1]本身就应该等于 nums[0],1乘任意一个数还等于这个数,所以这里初始化 f[0] 为1,g[n-1]同理可得,也初始化为1


代码如下:

class Solution {
public:
    vector<int> productExceptSelf(vector<int>& nums) 
    {
        int n = nums.size();
        vector<int> answer(n);
        //预处理前缀积数组 f 和后缀积数组 g
        vector<int> f(n), g(n);
        f[0] = g[n-1] = 1; // 处理细节问题
        for(int i = 1; i < n; i++)
            f[i] = f[i-1] * nums[i-1];
        for(int i = n - 2; i >= 0; i--)
            g[i] = g[i+1] * nums[i+1];
        //使用前缀积和后缀积数组
        for(int i = 0; i < n; i++)
            answer[i] = f[i] * g[i];
        return answer;
    }
};

题目五:和为K的子数组

给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 

子数组是数组中元素的连续非空序列。

示例 1:

输入:nums = [1,1,1], k = 2
输出:2

示例 2:

输入:nums = [1,2,3], k = 3
输出:2

解法一:暴力解法

此题看题意,很容易想出暴力解法,即从第一个位置开始,依次向后枚举,一直累加,因为可能存在负数,所以每次都需要加到最后一个元素,第一个位置累加完毕,就从第二个位置加,加到最后一个元素位置,直到最后一个元素

暴力枚举可以将数组中可能存在的子数组枚举一遍,每次判断子数组的元素和是否等于k,从而解答此题

暴力枚举的时间复杂度是O(N^2)

根据上述所说,可能存在负数的情况,所以这里的数组是不具备单调性的,所以也就不能使用双指针(滑动窗口)优化


解法二:前缀和 + 哈希表

想要使用前缀和的思想,我们可以将子数组转变为以 i 位置为结尾的子数组,暴力解法是以 i 位置为开头的所有子数组,这两种遍历方式没有区别,一个是从前向后遍历,一个是从后向前遍历的

之所以使用以 i 结尾,是因为这样可以更好的使用前缀和的思想,因为此时可以预处理出前缀和数组sum,sum[i]就表示 i 之前的所有元素的和
因为需要找元素之和为k的子数组,而如果我们以i为结尾,从i开始遍历向前找和为k的子数组,那和暴力解法没区别,所以此时可以转换思路:

寻找和为k的子数组,当枚举到 i 位置后,我们可以根据sum[i]知道以 i 位置为结尾的数组前缀和是多少,那么想找到一个子数组的元素和为k,可以转换为:
当我们枚举到以 i 位置为结尾时,想找一个子数组,它的前缀和为sum[i] - k即可,如果能够找到一个子数组的前缀和为sum[i] - k,那么就变相的说明i之前的数组中,存在和为k的子数组,相当于将i结尾的数组分为了两部分,一部分是和为k的子数组,一部分是和为sum[i] - k的子数组
也就是说,我们想找和为k的A数组,转化思路后变为找到和为sum[i]-k的B数组,也就相当于找到了和为k的A数组

即需要找到在[0, i-1]这个区间中,有多少个前缀和为 sum[i] - k的子数组

那么在了解这个思想后,我们难道是直接创建一个前缀和数组,再找i位置之前有多少个子数组的和等于sum[i] - k吗,那么此时这个算法的时间复杂度也是O(N^2),依旧是遍历数组的思路
因为遍历i位置是O(N),再寻找和为sum[i] - k也是O(N),所以时间复杂度也是O(N^2),那么如何巧妙地解决这个问题呢,这里就需要用到哈希表这个思想了:

哈希表就是用于快速查找某个数的,所以我们可以将前缀和插入到哈希表里,统计前缀和出现的次数,所以哈希表存的就是int, int类型的,第一个int存的是前缀和,第二个int存的是前缀和出现的次数,此时就无需遍历数组寻找和为sum[i] - k的数组,只需要找哈希表中sum[i] - k所对应的数字即可

 下面是细节问题:

①前缀和何时放入哈希表中?
是创建出前缀和数组,一股脑全放进去吗?是不能一开始就全放进哈希表中的,因为我们所计算的是 i 位置之前有多少个前缀和等于sum[i] - k,如果全放进入,是可能会统计到 i 位置之后的某些位置的前缀和数组也可能等于sum[i] - k
因此在计算 i 位置之前,哈希表中只保存 0~i-1 位置的前缀和

②不用真的创建出来一个前缀和数组

因为每次dp[i] = dp[i-1] + nums[i-1],每次只需要知道前一个位置的前缀和即可,所以此题中,只需使用一个变量sum标记之前的元素前缀和dp[i-1]是多少,计算完dp[i]后,把sum更新为dp[i]即可,所以在计算下一个dp[i]的时候,这个sum依旧是计算前的前缀和的值

③整个前缀和等于k的情况

也就是 0~i 这段区域的区间等于k,此时如果出现这种情况,我们按照上面的描述,就会在[0, -1]的区间内寻找,但是这个区间并不存在,而我们此时是存在这个等于k的情况的,所以需要特殊处理这种情况,因为整个数组的和为k,我们想找的sum[i] - k就变为0了,所以此时需要先设置hash[0] = 1,先在哈希表中存入这种情况


代码如下:

class Solution {
public:
    int subarraySum(vector<int>& nums, int k) {
        unordered_map<int, int> hash;//统计前缀和出现的次数
        hash[0] = 1; //处理整个数组之和是k的情况
        int sum = 0, ret = 0;
        for(auto& it : nums)
        {
            sum += it;//计算当前位置的前缀和
            if(hash.count(sum - k)) ret += hash[sum - k];//统计个数
            hash[sum]++;//将当前位置的前缀和放入哈希表中
        }
        return ret; 
    }
};

题目六:和可被K整除的子数组

给定一个整数数组 nums 和一个整数 k ,返回其中元素之和可被 k 整除的(连续、非空) 子数组 的数目。

子数组 是数组的 连续 部分。

示例 1:

输入:nums = [4,5,0,-2,-3,1], k = 5
输出:7
解释:
有 7 个子数组满足其元素之和可被 k = 5 整除:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]

示例 2:

输入: nums = [5], k = 9
输出: 0

首先这道题在做之前,先解释两个数学知识:

①同余定理

同余定理指的是,如果 (a - b) / p = k .... 0,也就是说 (a - b) 能够整除 k,那就存在a%p == b%p

证明很简单,(a - b) = k*p  ->  a = b + k*p -> a % p = b % p

因为k*p % p = 0,所以得出上式

②负数除以整数的情况

举个例子: -4 % 3 == -1,但是在数学上,余数只有正的,所以如果想取得正余数,余数无论正负数的通用公式如下:

(a % p + p) % p

因为负数%正数,得出的结果是负数,如果想要正数就需要加上这个正数,又因为可能原本的结果就是正数,此时再%这个正数,如果原本就是正数的话,后面加的这个p就被抵消了


解法一:暴力解法

暴力枚举出所有的子数组,然后把子数组的和加起来,判断是否能被k整除,与上一题一样,此题依旧是不能使用滑动窗口来做优化的,因为可能存在负数,数组不是单调的

解法二:前缀和 + 哈希表

这道题和上一题同样的思想,使用前缀和 + 哈希表完成

同样是求i之前的子数组的元素之和能够整除k,也就是下图所示:

假设在 i 之前的这段绿色区域的元素之和,能够被 k 整除,而前面这段红色区域元素之和是 x

所以得到: (sum - x) % k = 0,根据同余定理,可以得到:sum % k == x % k

所以得到一个结论,如果后面的绿色区域能够被 k 整除,那么前面的这段红色区域,同样能被 k 整除,那么也就是说,在 [0, i-1] 这个区间内,有多少个前缀和的余数是sum % k的,就说明有多少个子数组是满足被 k 整除这个条件的

同样需要处理细节问题,其他和上一题一样,唯一有一个需要注意的是:哈希表同样是<int, int>,但是第一个int不是存的前缀和了,而是存的前缀和的余数

代码如下:

class Solution {
public:
    int subarraysDivByK(vector<int>& nums, int k) {
        unordered_map<int ,int> hash;
        hash[0] = 1; //特殊情况,如果整体的前缀和能被k整除
        int sum = 0, ret = 0;
        for(auto& it : nums)
        {
            sum += it; //sum算出当前位置之前的前缀和
            int ans = (sum % k + k) % k; //求出修正后的余数
            if(hash.count(ans)) ret += hash[ans]; //统计结果
            hash[ans]++;
        }
        return ret;
    }
};

题目七:连续数组

给定一个二进制数组 nums , 找到含有相同数量的 0 和 1 的最长连续子数组,并返回该子数组的长度。

示例 1:

输入: nums = [0,1]
输出: 2
说明: [0, 1] 是具有相同数量 0 和 1 的最长连续子数组。

示例 2:

输入: nums = [0,1,0]
输出: 2
说明: [0, 1] (或 [1, 0]) 是具有相同数量0和1的最长连续子数组。

首先先看这个题目要求,找含有相同数量的0和1的最长连续子数组,我们初始看这个题目要求感觉可能半天想不出来解法, 但是如果转换一下思路,将数组中的0全部换为-1,此时就变为了子数组中含有的1和-1的数量相同,那如果1和-1的数量相同,就说明相加为0了,此时就可以和前面的和为k的子数组那道题一样了,这道题就变为了:和为0的最长子数组了

虽然思想是一样的,但是却是有很多细节问题,如下所示:

①哈希表中存什么

哈希表同样是int, int,第一个int存的依然是前缀和,但是这里的第二个int存的是下标,因为需要知道这里的下标,才能算出这里的下标与

②什么时候存入哈希表

和上一题一样,都是在计算 i 位置之前,哈希表中只保存 0~i-1 位置的前缀和

③如果哈希表中出现重复的<sum, i>时,如何存

存的是第一次出现的值,因为如下图所示,绿色是符合要求的区域,而越早出现的符合要求的点越靠左,越靠左绿色的范围就越大, 即子数组的长度越长

因为此时符合要求的子数组相加为0,所以左边的红色区域的和也就是sum,因此符合的点越靠左,绿色区域越大,即符合要求的子数组长度越长

④默认的整体的数组前缀和为0,如何存

因为如果在i位置之前有一个子数组满足条件,那么是在0~i-1的区域找满足条件的子数组,而此时整个数组都满足题意了,那么在前面就没有位置找了,所以就变成了在[0, -1]的区间找

当数组整体前缀和为0时,我们就需要在-1的位置寻找一个前缀和,因为存的是下标,所以存的是-1,所以此时计算长度时就能够满足这种特殊情况了

⑤最长子数组的长度怎么算

如上图所示,绿色区域是所求的子数组长度,所以长度计算就为:i - j


代码如下:

class Solution {
public:
    int findMaxLength(vector<int>& nums) {
        unordered_map<int, int> hash;
        hash[0] = -1; //处理特殊情况
        int sum = 0, ret = 0;
        for(int i = 0; i < nums.size(); i++)
        {
            sum += nums[i] == 0 ? -1 : 1;//计算当前位置的前缀和,并把0全替换为-1
            if(hash.count(sum)) ret = max(i - hash[sum], ret);
            //这里需要加else,为了保证出现重复的sum,只保留第一次的,确保子数组长度最长
            else hash[sum] = i;
        }
        return ret;
    }
};

题目八:矩阵区域和

给你一个 m x n 的矩阵 mat 和一个整数 k ,请你返回一个矩阵 answer ,其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和: 

  • i - k <= r <= i + k,
  • j - k <= c <= j + k 且
  • (r, c) 在矩阵内。

示例 1:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[12,21,16],[27,45,33],[24,39,28]]

示例 2:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 2
输出:[[45,45,45],[45,45,45],[45,45,45]]

这道题的题意其实很简单,就是有一个m × n的矩阵,再给一个整数k,要求每一个位置都向上下左右扩展k个单位(超出的部分不算),扩展后的区域的元素之和,就是原位置的元素值,以示例一为例:

2号位置就是计算红色区域的元素和,上面虚线就表示超出的范围,忽略
5号位置就是计算蓝色区域的元素和

这道题就很明显是要用到二维前缀和了,需要在这里再次提醒,二维前缀和不需要背模版,只需要画图理解,很快就能自己现推一个公式出来,理解最重要!

对于此题来说,给一个坐标(i, j),那么这个坐标所对应需要计算的区域就是从(i-k, j-k)到(i+k, j+k),此时需要考虑是否会超出矩阵的范围,所以做如下处理:

x1 = max(0, i-k)x2 = min(m-1, i+k)

y1 = max(0, j-k)y2 = min(n-1, j+k)

上述讲解是用于求answer矩阵的每个位置对应的(x1,y1)和(x2,y2)坐标的,但是有一个细节问题需要注意:

在使用前缀和时,我们为了能够正常使用,数组的下标都是从1开始的,因为从0开始会出现越界访问的问题,而此题的下标是从0开始的,所以需要考虑下标的映射关系

题目中所给的mat矩阵是3×3的,而我们想正常使用前缀和,就得让坐标从1开始,也就是相比于mat矩阵,多加一行多加一列,所以mat和answer就变为下图所示:

由于dp数组多了一行一列,所以就会有下面这种情况:

我们想预处理dp二维数组中的(x, y)位置时,需要再mat中找的是(x-1, y-1)位置
并且形成最终的answer数组的(x, y)位置时,所需要dp数组中的位置又是(x+1, y+1)

此时就有两种处理思路:

第一种思路:在预处理dp数组时,在原始的公式中把每一个x1、x2、y1、y2都+1,这样才能对应到mat二维数组中的元素
但是这样处理比较麻烦,每一个位置都需要改

第二种思路:将刚刚计算的x1、x2、y1、y2是原始mat矩阵的下标,如果想在dp矩阵中找位置,每个后面都+1即可,这样就完成了上述操作,比较简便

x1 = max(0, i-k)+1x2 = min(m-1, i+k)+1

y1 = max(0, j-k)+1y2 = min(n-1, j+k)+1


代码如下:

class Solution {
public:
    vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) {
        int m = mat.size(), n = mat[0].size();
        vector<vector<int>> dp(m+1, vector<int>(n+1));
        vector<vector<int>> answer(m, vector<int>(n));
        //预处理前缀和数组dp
        for(int i = 1; i < m+1; i++)
            for(int j = 1; j < n+1; j++)
                dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + mat[i-1][j-1];
        //使用前缀和数组
        for(int i = 0; i < m; i++)
        {
            for(int j = 0; j < n; j++)
            {
                int x1 = max(0, i-k) + 1, y1 = max(0, j-k) + 1;
                int x2 = min(m-1, i+k) + 1, y2 = min(n-1, j+k) + 1;
                answer[i][j] = dp[x2][y2] - dp[x2][y1-1] - dp[x1-1][y2] + dp[x1-1][y1-1];
            }
        }
        return answer;
    }
};

前缀和题目到此结束

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1799584.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【工具】Vmware17 安装mac(13.6.7)虚拟机

目录 0.简介 1.环境 2.详细步骤 2.1下载mac镜像&#xff08;可以选择你所需要的&#xff09; 2.2 VMware安装 1&#xff09;创建新的虚拟机 2&#xff09;选择【典型】&#xff0c;点击下一步 3&#xff09;选择【安装程序光盘映像文件】&#xff0c;点击浏览&#xff…

vue3路由详解,从0开始手动配置路由(vite,vue-router)

创建一个不含路由的vue项目 &#xff08;查看路由配置可以直接跳过这一段&#xff09; 输入npm指令&#xff0c;然后写一个项目名称&#xff0c;之后一路回车即可 npm create vuelatest 注意这里我们不选引入vue router&#xff0c;成功后可以 查看目录 然后按提示信息输入指…

如何设置vue3项目中默认的背景为白色

方法1&#xff1a;通过CSS全局样式 在全局CSS文件中设置&#xff1a; 如果你的项目中有全局的CSS文件&#xff08;如App.vue或专门的CSS文件&#xff09;&#xff0c;你可以直接设置body或html标签的背景颜色。 在src/assets文件夹中&#xff08;或者任何你存放CSS文件的地方&a…

【机器学习基础】Python编程06:五个实用练习题的解析与总结

Python是一种广泛使用的高级编程语言,它在机器学习领域中的重要性主要体现在以下几个方面: 简洁易学:Python语法简洁清晰,易于学习,使得初学者能够快速上手机器学习项目。 丰富的库支持:Python拥有大量的机器学习库,如scikit-learn、TensorFlow、Keras和PyTorch等,这些…

Linux网络-自定义协议、序列化和反序列化、网络计算服务器的实现和Windows端客户端

文章目录 前言一、自定义协议传结构体对象 序列化和反序列化什么是序列化&#xff1f;反序列化 二、计算器服务端&#xff08;线程池版本&#xff09;1.main.cc2.Socket.hpp3.protocol.hpp4.Calculator.hpp5.serverCal.hpp6.threadPool.hpp7.Task.hpp8. log.hpp 客户端Windows客…

【回溯算法】N皇后问题·构建多叉决策树,遍历决策节点,做出决策(边),收集答案

0、前言 在由树形解空间入手&#xff0c;深入分析回溯、动态规划、分治算法的共同点和不同点这篇博客&#xff0c;其实已经对回溯算法的思想、做题框架做出了详细的阐述。这篇文章我们再从N皇后问题&#xff0c;加深我们对其理解。 这里在简单再次对其进行概述&#xff1a; …

3、前端本地环境搭建

前端本地环境搭建 安装node [node下载地址] https://nodejs.org/en/download/prebuilt-installer 选择LTS的版本进行下载 下载后直接双击点击&#xff0c;选择自己想要安装到的目录一直点下一步即可&#xff08;建议不要安装到c盘&#xff09; 安装完成后配置环境变量&am…

NLP课程笔记-基于transformers的自然语言处理入门

NLP课程笔记-基于transformers的自然语言处理入门 项目地址2.1 图解attention2.1.1 Seq2seq框架2.1.2 Seq2seq细节2.1.3 Attention1) 基于RNN的seq2seq模型的问题2)基于Attention seq2seq方案 2.2 图解transformer2.2.1 transformer宏观结构单层编码器单层解码器 2.2.2 transfo…

揭秘FL Studio21.2最新官方免费下载中文破解版!

在音乐创作中&#xff0c;一个优秀的宿主软件是必不可少的。而FL Studio 21.2中文破解汉化免费版&#xff0c;作为一款功能强大、易于上手的宿主软件&#xff0c;已经成为越来越多音乐制作者的首选。那么&#xff0c;它究竟有何魅力呢&#xff1f;下面就让我们一起来了解一下。…

.Net Core 8.0 IIS部署遇到奇怪的部分接口报404的问题解决

本地运行没问题&#xff0c;部署到IIS后&#xff0c;部分接口报404&#xff0c;其它接口都正常。 经和群里讨论&#xff0c;大概意思是接口返回数据比较大的时候&#xff0c;就会出现这个问题。 查看事件查看器&#xff0c;发现应该是数据过大时使用了临时文件夹&#xff0c;…

CondaSSLError: OpenSSL appears to be unavailable on this machine.

conda create -n x1 python3.7报错 PS C:\Users\Richardo.M.Song\Desktop\lele_seg\x1> conda create -n x1 python3.7 Collecting package metadata (current_repodata.json): failed CondaSSLError: OpenSSL appears to be unavailable on this machine. OpenSSL is requ…

【TB作品】MSP430G2553单片机,MSP430 单片机读取 SHT30 传感器并显示数据

使用 MSP430 单片机读取 SHT30 传感器并显示数据 作品功能 本文介绍了如何使用 MSP430 单片机读取 SHT30 温湿度传感器的数据&#xff0c;并通过 OLED 屏幕显示实时的温度和湿度信息。通过此项目&#xff0c;您将学习如何配置 MSP430 的 I2C 接口、读取 SHT30 传感器的数据以…

求助!什么软件可以人声分离?手机上可以进行人声分离操作吗?

在数字时代&#xff0c;音频处理变得越来越重要&#xff0c;而人声分离技术则是其中的一项关键技术。很多人可能都有过这样的疑问&#xff1a;什么软件可以实现人声分离&#xff1f;手机上能否进行人声分离操作&#xff1f;今天&#xff0c;我们就来为大家解答这些问题&#xf…

封装组件库仿elementui<1>

目录 type属性 引入字体图标 button的点击事件 disabled属性 methods:{//点击事件是外部注册的handleClick(e){this.$emit(click,e)//通知父组件点击了&#xff0c;点了按钮&#xff0c;触发外界的click&#xff1f;传参为事件对象//向父组件派发了click事件} }, type属性…

揭露:抖音外卖区域代理骗局真相,绝不可错过!

自2023年11月23日抖音发布清退服务商的公告后&#xff0c;由官方认证的抖音外卖平台全国代理正式成为历史&#xff0c;而后&#xff0c;抖音外卖平台区域代理接棒&#xff0c;帮助抖音开拓本地生活市场。在此背景下&#xff0c;抖音外卖平台区域代理的申请人数与日俱增&#xf…

Frida 学习之 messages

目录 一、消息发送 二、环境准备 三、从目标进程中发消息 四、在目标进程中接收消息 五、在目标进程中以阻塞方式接收消息 官方链接&#xff1a;Messages | Frida • A world-class dynamic instrumentation toolkit 参考链接&#xff1a;Frida官方手册 - 消息发送_frida…

【Mac】Keyboard Maestro for Mac(键盘大师)软件介绍及安装教程

软件介绍 Keyboard Maestro for mac&#xff08;键盘大师&#xff09;是目前Mac OS平台上功能最为齐全的Mac键盘增强工具&#xff0c;它能将你的Keyboard作用发挥到极致&#xff0c;可以根据命令或计划自动执行简单或复杂的应用程序或网站&#xff0c;文本或图像。使用Keyboar…

mysql 8 linux7,8安装教程

选择自己对应的linux版本 cat /etc/os-release //查看自己linux系统版本 1.mysql下载地址 MySQL :: Download MySQL Community Server (Archived Versions) 拉到下面找到 选择自己linux指定的版本&#xff0c;否则会很麻烦 cat /etc/os-release //查看系统版本 2.查…

matlab模拟太阳耀斑喷发

代码 function simulate_solar_flare% 参数设置gridSize 100; % 网格大小timeSteps 200; % 时间步数dt 0.1; % 时间步长% 初始化网格[X, Y] meshgrid(linspace(-5, 5, gridSize));Z zeros(size(X));% 设置耀斑初始位置和强度flareCenter [0, 0]; % 耀斑中心位置flareRad…

docker基础,docker安装mysql,docker安装Nginx,docker安装mq,docker基础命令

核心功能操作镜像 Docker安装mysql docker run -d --name mysql -p 3306:3306 -e TZAsia/Shanghai -e MYSQL_ROOT_PASSWORDlcl15604007179 mysql docker的基本操作 docker rm 容器名称即可 docker ps 查看当前运行的容器 docker rm 干掉当前容器 docker logs 查看容器命令日…