语言模型解构——Tokenizer

news2024/10/7 16:19:11

1. 认识Tokenizer

1.1 为什么要有tokenizer?

计算机是无法理解人类语言的,它只会进行0和1的二进制计算。但是呢,大语言模型就是通过二进制计算,让你感觉计算机理解了人类语言。

  • 举个例子:单=1,双=2,计算机面临“单”和“双”的时候,它所理解的就是2倍关系。
  • 再举一个例子:赞美=1,诋毁=0, 当计算机遇到0.5的时候,它知道这是“毁誉参半”。
  • 再再举一个例子:女王={1,1},女人={1,0},国王={0,1},它能明白“女人”+“国王”=“女王”。

可以看出,计算机面临文字的时候,都是要通过数字去理解的。

所以,如何把文本转成数字,是语言模型中最基础的一步,而Tokenizer的作用就是完成文本到数字的转换,是大语言模型最基础的组件。

1.2 什么是tokenizer?

Tokenizer是一个词元生成器,它首先通过分词算法将文本切分成独立的token列表,再通过词表映射将每个token转换成语言模型可以处理的数字。
在这里插入图片描述
这里有一个网站,可以在线演示tokenizer的切分,见:tokenizer在线演示

大多数常见的英语单词都分配一个token:

而有的单词却分配不止一个token:
像congratulations就被切分成4个token.

不仅如此,而字母大小写,空格和标点符号对分词结果也有影响,如下面示例:

以上这些分词效果,均与token的切分方式有关。

2. token切分方式

根据切分粒度的不同可以把tokenizer分为:

  • 基于词的切分
  • 基于字的切分
  • 基于subword的切分

2.1 基于词的切分

将文本按照词语进行分割,通过空格或者标点符号来把文本分成一个个单词,这样分词之后的 token 数量就不会太多,比如 It is a nice day -> It, is, a, nice, day。缺点是:

  • 词表规模可能会过大;
  • 一定会存在UNK,造成信息丢失;
  • 不能学习到词根、词缀之间的关系,例如:dog与dogs,happy与unhappy;

UNK是"unknown"(未知)的缩写,表示模型无法识别的单词或标记,对于一些新词、生僻词、专有名词或拼写错误的词可能未被词典收录。

词表规模过大原因:自然语言中存在大量的词汇,而词汇与词汇之间的排列组合又能造出大量的复合词,这会导致词表规模很大,并且持续增长。

2.2 基于字的切分

将文本按照字符进行切分,把文本拆分成一个个字符单独表示,比如 highest -> h, i, g, h, e, s, t。

  • 优点:
    • 词表Vocab 不会太大,Vocab 的大小为字符集的大小,英文只有26个字母;
    • 也不会遇到UNK问题;
  • 缺点:
    • 字符本身并没有传达太多的语义,丧失了词的语义信息;
    • 分词之后的 token序列过长,例如highest 一个单词就可以得到 7 个 token,如果是很长的文本分出来的token数量将难以想象,这会造成语言模型的解码效率很低;

2.3 基于subword的切分

从上可以看出,基于词和基于字的切分方式是两个极端,其优缺点也是互补的。而subword就是一种相对平衡的折中方案,基本切分原则是:

  • 高频词依旧切分成完整的整词,例如It => [ It ]
  • 低频词被切分成有意义的子词,例如 dogs => [dog, s]

它的特点是:

  • 词表规模适中,解码效率较高
  • 不存在UNK,信息不丢失
  • 能学习到词缀之间的关系

因此基于subword的切分是目前的主流切分方式。

3. subword分词流程

分词的基本需求:给定一个句子,基于分词模型切分成一连串token。效果如下:

input: Hello, how are u tday?
output: ['Hello', ',', 'Ġhow', 'Ġare', 'Ġu', 'Ġt', 'day', '?']

整个tokenize的过程可以用下面这个图来理解,分为预分词、基于模型分词、编码三步。
在这里插入图片描述

3.1 预分词

预分词阶段会把句子切分成单元,可以基于空格或者标点进行切分。

以gpt2为例,预切分结果如下,每个单词变成了[word, (start_index, end_index)]

input: Hello, how are  you?

pre-tokenize:
[GPT2]: [('Hello', (0, 5)), (',', (5, 6)), ('Ġhow', (6, 10)), ('Ġare', (10, 14)), ('Ġ', (14, 15)), ('Ġyou', (15, 19)), ('?', (19, 20))]

在GPT2中,空格会保留成特殊的字符“Ġ”。

不同的模型在切分时对于空格和标点的处理方式不同,作为对比:

  • BERT的tokenizer也是基于空格和标点进行切分,但不会保留空格。
[BERT]: [('Hello', (0, 5)), (',', (5, 6)), ('how', (7, 10)), ('are', (11, 14)), ('you', (16, 19)), ('?', (19, 20))]
  • LLama 的T5则只基于空格进行切分,标点不会切分。并且空格会保留成特殊字符"▁",并且句子开头也会添加特殊字符"▁"。
[t5]: [('▁Hello,', (0, 6)), ('▁how', (7, 10)), ('▁are', (11, 14)), ('▁you?', (16, 20))] 

3.2 基于模型分词

上面预分词的结果基本就是一个单词一个token,但这样的切分粒度是很粗的,正如上面切分方式中介绍的问题,容易造成词表规模过大。

而基于模型分词本质上就是对预分词后的每个单词再尝试进行切分,也就是上面提到的subword方式,目前主流大语言模型使用的是BPE算法

BPE分词的过程可以简单理解为从短到长逐步查找词元的过程,概括为以下三步。

  1. 对于输入序列中的每个单词拆分成一个个字符,以Ġtday为例,拆分结果如下。
('Ġ', 't', 'd', 'a', 'y')

在BPE算法中,每个字母都是最基本的词元,这样能避免UNK问题。

  1. 从输入的字符序列逐步查找是否有更长的词元可以代替,如果找到,就将较短的几个词元替换成这个更长的词元,还是以Ġtday为例替换过程如下所示。
# 第一次替换:'Ġ'和't'->'Ġt'
('Ġt', 'd', 'a', 'y')
# 第二次替换:'a'和'y'->'ay'
('Ġt', 'd', 'ay')
# 第三次替换:'d'和'ay'->'day'
('Ġt', 'day')
# 结束
  1. 这样Ġtday这个预分的词元就被拆分成了Ġtday两个最终的词元,这两个词元会替换掉先前的Ġtday

为什么Ġtday不能进一步合并替换呢?
原因:tday其实是today这个单词的网络用语,这个网络简称在词汇表中并不存在,所以无法合并,最终tday这个单词就在分词阶段拆分成了t和day两个token。

那么,具体哪些字符或子词能合并成更长的词元呢?

这里依据的是分词模型中子词合并记录merges.txt,这个文件是模型训练过程中生成的,其中一段示例如下。

[
	["]", ",\\u010a"],
	["\\u0120H", "e"],
	["_", "st"],
	["f", "ul"],
	["o", "le"],
	[")", "{\\u010a"],
	["\\u0120sh", "ould"],
	["op", "y"],
	["el", "p"],
	["i", "er"],
	["_", "name"],
	["ers", "on"],
	["I", "ON"],
	["ot", "e"],
	["\\u0120t", "est"],
	["\\u0120b", "et"],
	["rr", "or"],
	["ul", "ar"],
	["\\u00e3", "\\u0122"],
	["\\u0120", "\\u00d0"],
	["b", "s"],
	["t", "ing"],
	["\\u0120m", "ake"],
	["T", "r"],
	["\\u0120a", "fter"],
	["ar", "get"],
	["R", "O"],
	["olum", "n"],
	["r", "c"],
	["_", "re"],
	["def", "ine"],
	["\\u0120r", "ight"],
	["r", "ight"],
	["d", "ay"],
	["\\u0120l", "ong"],
	["[", "]"],
	["(", "p"],
	["t", "d"],
	["con", "d"],
	["\\u0120P", "ro"],
	["\\u0120re", "m"],
	["ption", "s"],
	["v", "id"],
	[".", "g"],
	["\\u0120", "ext"],
	["\\u0120", "__"],
	["\'", ")\\u010a"],
	["p", "ace"],
	["m", "p"],
	["\\u0120m", "in"],
	["st", "ance"],
	["a", "ir"],
	["a", "ction"],
	["w", "h"],
	["t", "ype"],
	["ut", "il"],
	["a", "it"],
	["<", "?"],
	["I", "C"],
	["t", "ext"],
	["\\u0120p", "h"],
	["\\u0120f", "l"],
	[".", "M"],
	["cc", "ess"],
	["b", "r"],
	["f", "ore"],
	["ers", "ion"],
	[")", ",\\u010a"],
	[".", "re"],
	["ate", "g"],
	["\\u0120l", "oc"],
	["in", "s"],
	["-", "s"],
	["tr", "ib"],

这个合并记录表与我们人类能理解的单词、词根、词缀有一定差别,既有我们常见单词的合并记录: ["def","ine"], ["r", "ight"], ["d", "ay"],也有我们看不明白的: ["\\u0120f", "l"], ["cc", "ess"],这些合并记录不是人工编辑的,而是模型训练阶段根据实际语料来生成的。

这种方式是有效的,它既能保留常见的独立词汇(例如:how), 又能保证未知或罕见的词汇能被拆分为较小的词根或词缀(例如:tday->t和day),即使没有词根或词缀,最后还能以单个字符(例如:?, u) 作为词元保证不会出现UNK。

这样,通过词汇表就可以将预分词后的单词序列切分成最终的词元。

input: Hello, how are u tday?
Model: ['Hello', ',', 'Ġhow', 'Ġare', 'Ġu', 'Ġt', 'day', '?']

3.3 编码

编码本质上就是给每个token分配一个唯一的数字ID,这个数字ID是分词模型训练好后就维护在词汇表中的。

每个分词模型内部都有一个vocab词汇表,以chatgpt为例,目前使用的词表为c100k_base, 它是一个index ——> token的map映射(index表示token对应的数字ID)里面有大概10万个词元,示例如下:

{
    "0": "!",
    "1": "\"",
    "2": "#",
    "3": "$",
    "4": "%",
    "5": "&",
    "6": "'",
    "7": "(",
    "8": ")",
    "9": "*",
    "10": "+",
    ……
    "1268": " how",
    "1269": "rite",
    "1270": "'\n",
    "1271": "To",
    "1272": "40",
    "1273": "ww",
    "1274": " people",
    "1275": "index",
    ……
    "100250": ".allowed",
    "100251": "(newUser",
    "100252": " merciless",
    "100253": ".WaitFor",
    "100254": " daycare",
    "100255": " Conveyor"
}

切分好token后,就可以根据上面示例的词汇表,将token序列转换为数字序列,如下所示:

input: ['Hello', ',', 'Ġhow', 'Ġare', 'Ġu', 'Ġt', 'day', '?']
output: [9906, 11, 1268, 527, 577, 259, 1316, 5380]

关于这个词表vocab以及合并记录merges.txt的由来,与BPE算法的实现和训练过程有关,后续再介绍。

4. 中文分词

4.1 长度疑问

我们在估算token的消耗时,经常听到有同事说汉字要占两个token,是这样吗?我们来验证下:

为何有的汉字一个token,有的汉字两个token? 这和tiktoken对中文分词的实现方式有关。

4.2 实现剖析

举例:‘山东淄博吃烧烤’
在这里插入图片描述
对应词汇表中的词元:

["山", "东", "b'\\xe6\\xb7'", "b'\\x84'", "b'\\xe5\\x8d'", "b'\\x9a'", "b'\\xe5\\x90'", "b'\\x83'", "b'\\xe7'", "b'\\x83'", "b'\\xa7'", "b'\\xe7'", "b'\\x83'", "b'\\xa4'"]

除了“山“、”东”这两个相对比较简单的汉字词表里面直接就有,其他的都是一些非常奇怪的Unicode编码表示。

仔细观察可以发现:tokens[85315, 226] 对应的"b’\xe6\xb7’", “b’\x84’” 拼接起来,然后按照utf-8解码回去 b’\xe6\xb7\x84’.decode(‘utf-8’) 得到的就是“淄”。

原来,OpenAI为了支持多种语言的Tokenizer,采用了文本的一种通用表示:UTF-8的编码方式,这是一种针对Unicode的可变长度字符编码方式,它将一个Unicode字符编码为1到4个字节的序列。

  • 因为比较常见,所以被编码为了独立的词元
  • 等字词频较低,所以按照Unicode编码预处理成了独立的3个字节,然后子词的迭代 合并最终分成了两个词元。

\x 表示16进制编码,可以发现淄博分别被编码为6个16进制数字,分别占3个字节。随后,GPT-4将每2个16进制数字,也就是1字节的数据作为最小颗粒度的token,然后进行BPE的迭代、合并词表。

5. tiktoken

tiktoken是OpenAI开源一种分词工具,
采用BPE算法实现,被GPT系列大模型广泛使用。

基于某个模型来初始化tiktoken(不同模型的tiktoken词表不同):

import tiktoken
enc = tiktoken.encoding_for_model("gpt-3.5-turbo-16k")

字节对编码

encoding_res = enc.encode("Hello, how are u tday?")
print(encoding_res)

> [9906, 11, 1268, 527, 577, 259, 1316, 30]

字节对解码

raw_text = enc.decode(encoding_res)
print(raw_text) 

> Hello, how are u tday?

如果想要控制token数量,则可以通过len函数来判断

length = len(enc.encode("Hello, how are u tday?"))
print(length)

> 8

参考资料

  • gpt在线分词演示
  • 探索GPT Tokenizer的工作原理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1795837.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

龙迅LT8712X TYPE-C或者DP转HDMI加VGA输出,内置MCU,只是IIS以及4K60HZ分辨率

龙迅LT8712X描述&#xff1a; LT8712X是一种高性能的Type-C/DP1.2到HDMI2.0和VGA转换器&#xff0c;设计用于将USB Type-C源或DP1.2源连接到HDMI2.0和VGA接收器。LT8712X集成了一个DP1.2兼容的接收器&#xff0c;一个HDMI2.0兼容的发射机和一个高速三角机窝视频DAC。此外&…

【论文速读】LM的文本生成方法,Top-p,温度,《The Curious Case of Neural Text Degeneration》

论文链接&#xff1a;https://arxiv.org/abs/1904.09751 https://ar5iv.labs.arxiv.org/html/1904.09751 这篇文章&#xff0c;描述的是语言模型的文本生成的核采样的方法&#xff0c;就是现在熟知的top-p 大概看看&#xff0c;还有几个地方比较有趣&#xff0c;值得记录一下。…

kotlin1.8.10问题导致gson报错TypeToken type argument must not contain a type variable

书接上回&#xff0c;https://blog.csdn.net/jzlhll123/article/details/139302991。 之前我发现gson报错后&#xff1a; gson在2.11.0给我的kotlin项目代码报错了。 IllegalArgumentException: TypeToken type argument must not contain a type variable 上次解释原因是因为&…

WALT算法简介

WALT(Windows-Assist Load Tracing)算法是由Qcom开发&#xff0c; 通过把时间划分为窗口&#xff0c;对 task运行时间和CPU负载进行跟踪计算的方法。为任务调度、迁移、负载均衡及CPU调频 提供输入。 WALT相对PELT算法&#xff0c;更能及时反映负载变化&#xff0c; 更适用于…

PasteCode系列系统说明

定义 PasteCode系列是指项目是基于PasteTemplate构建的五层以上项目&#xff0c;包括不仅限于 Domain EntityFrameworkCore Application.Contracts Application HttpApi.Host 熟悉ABP vNext就很好理解了&#xff0c;因为PasteTemplate就是基于ABP的框架精简而来&#xff01;在…

CVE-2022-4230

CVE-2022-4230 漏洞介绍 WP Statistics WordPress 插件13.2.9之前的版本不会转义参数&#xff0c;这可能允许经过身份验证的用户执行 SQL 注入攻击。默认情况下&#xff0c;具有管理选项功能 (admin) 的用户可以使用受影响的功能&#xff0c;但是该插件有一个设置允许低权限用…

绘画参数配置及使用

绘画参数配置及使用 路径&#xff1a;站点后台-功能-AI绘画 进入参数配置 接口选择&#xff1a;多种接口自主选择&#xff08;需自己准备key&#xff09;&#xff0c;对应接口的key对话和绘画通用 存储空间&#xff1a; 位置在超管后台-存储空间 自主选择存储&#xff08;需…

Python画图(多图展示在一个平面)

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…

Go实战 | 使用Go-Fiber采用分层架构搭建一个简单的Web服务

前言 &#x1f4e2;博客主页&#xff1a;程序源⠀-CSDN博客 &#x1f4e2;欢迎点赞&#x1f44d;收藏⭐留言&#x1f4dd;如有错误敬请指正&#xff01; 一、环境准备、示例介绍 Go语言安装&#xff0c;GoLand编辑器 这个示例实现了一个简单的待办事项&#xff08;todo&#xf…

应用解析 | 面向智能网联汽车的产教融合解决方案

背景介绍 随着科技的飞速发展&#xff0c;智能网联汽车已成为汽车产业的新宠&#xff0c;引领着未来出行的潮流。然而&#xff0c;行业的高速发展也带来了对高素质技术技能人才的迫切需求。为满足这一需求&#xff0c;推动教育链、人才链与产业链、创新链的深度融合&#xff0…

【Java】static 修饰变量

static 一种java内置关键字&#xff0c;静态关键字&#xff0c;可以修饰成员变量、成员方法。 static 成员变量 1.static 成员变量2.类变量图解3.类变量的访问4.类变量的内存原理5.类变量的应用 1.static 成员变量 成员变量按照有无static修饰&#xff0c;可以分为 类变量…

AGP8+ android.useNewApkCreator‘ is deprecated 打包失败

问题 新建一个项目&#xff0c;默认使用最新版的 AGP 和 Gradle&#xff0c;打包构建立马失败&#xff01; 错误日志 Caused by: com.android.builder.errors.EvalIssueException: The option android.useNewApkCreator is deprecated. An exception occurred applying plu…

STM32-16-ADC

STM32-01-认识单片机 STM32-02-基础知识 STM32-03-HAL库 STM32-04-时钟树 STM32-05-SYSTEM文件夹 STM32-06-GPIO STM32-07-外部中断 STM32-08-串口 STM32-09-IWDG和WWDG STM32-10-定时器 STM32-11-电容触摸按键 STM32-12-OLED模块 STM32-13-MPU STM32-14-FSMC_LCD STM32-15-DMA…

关于2024中国海洋装备博览会(福州)的参展通知

2024中国航洋装备博览会 2024世界航海装备大会 2024中国船舶供应链大会 2024中国航洋装备博览会2024世界航海装备大会 时间地点、规模、主题、定位 1.时间&#xff1a;2024年11月15日至18日 2.地点&#xff1a;福州海峡国际会展中心、冠城大通游艇码头 3.规模&#xff1…

Seed-TTS语音编辑有多强?对比实测结果让你惊叹!

GLM-4-9B 开源系列模型 前言 就在最近&#xff0c;ByteDance的研究人员最近推出了一系列名为Seed-TTS的大规模自回归文本转语音(TTS)模型,能够合成几乎与人类语音无法区分的高质量语音。那么Seed-TTS的表现究竟有多强呢?让我们一起来感受下Seed-TTS带来的惊喜吧! 介绍Seed-TTS…

Vivado 设置关联使用第三方仿真软件 Modelsim

目录 1.前言2.Vivado 设置关联使用第三方仿真软件 Modelsim 微信公众号获取更多FPGA相关源码&#xff1a; 1.前言 Vivado 软件自带有仿真功能,该功能使用还是比较方便的,初学者可以直接使用自带的仿真功能。 Modelsim仿真工具是Model公司开发的。它支持Verilog、VHDL以及他…

27 - 求关注者的数量(高频 SQL 50 题基础版)

27 - 求关注者的数量 selectuser_id,count(*) followers_count fromFollowers group byuser_id;

什么是阻塞IO和非阻塞IO

一、IO模型 五种&#xff1a;阻塞IO、非阻塞IO、多路复用IO、信号驱动IO、异步IO 1.阻塞IO&#xff1a;一个应用程序执行I/O操作时&#xff0c;会被阻塞&#xff0c;直到数据准备好或操作完成。这种模型通常简单易用&#xff0c;但会造成资源浪费。因为CPU在等待I/O操作完成时…

为什么要学习扣子(Coze)

&#x1f9d9;‍♂️ 诸位好&#xff0c;吾乃斜杠君&#xff0c;编程界之翘楚&#xff0c;代码之大师。算法如流水&#xff0c;逻辑如棋局。 &#x1f4dc; 吾之笔记&#xff0c;内含诸般技术之秘诀。吾欲以此笔记&#xff0c;传授编程之道&#xff0c;助汝解技术难题。 &#…

2024大模型如何学习【附学习资料】

摘要&#xff1a; 通过深入了解本文中的这些细节&#xff0c;并在实际项目中应用相关知识&#xff0c;将能够更好地理解和利用大模型的潜力&#xff0c;不仅在学术研究中&#xff0c;也在工程实践中。通过不断探索新方法、参与项目和保持热情&#xff0c;并将其应用于各种领域&…