使用C++实现YOLO图像分类:从环境搭建到性能评估的完整指南

news2025/1/6 20:15:59

⭐️我叫忆_恒心,一名喜欢书写博客的研究生👨‍🎓。
如果觉得本文能帮到您,麻烦点个赞👍呗!

近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧,喜欢的小伙伴给个三连支持一下呗。👍⭐️❤️
Qt5.9专栏定期更新Qt的一些项目Demo
项目与比赛专栏定期更新比赛的一些心得面试项目常被问到的知识点。

在这里插入图片描述

一、引言

YOLO(You Only Look Once)是一种先进的实时对象检测系统,其核心思想是在一个单一的神经网络中直接预测对象边界框和类概率。与传统的对象检测方法相比,YOLO在速度和准确性上都有显著优势。在这篇文章中,我们将介绍如何使用C++实现YOLO进行图像分类,并提供示例代码和相关资源。

随着YOLO技术的迅速发展,使用Python进行yolo部署变得相对简单。然而,在实际的业务场景中,我们往往需要利用C++进行高效调用。因此,本文将重点介绍如何使用C++实现YOLO进行图像分类,并提供相关的示例代码和资源,帮助您在自己的项目中灵活应用YOLO。

yolo发展迅猛,且参数变得更少
在这里插入图片描述

1.1 YOLO的基本概念

接下来,我们将详细介绍如何搭建环境、下载并配置YOLO模型文件,以及如何编写和运行示例代码。

在这里插入图片描述

YOLO的基本思想是将整个图像分为SxS的网格,每个网格负责预测多个边界框和这些边界框的置信度,以及每个边界框中包含的类别概率。通过训练一个深度卷积神经网络,YOLO可以在一个前向传递中预测多个对象。

除了进行目标检测,也可以将这个应用在图像分类中。
在这里插入图片描述
在这里插入图片描述

二、 环境搭建

在开始之前,您需要确保已经安装了以下工具和库:

  1. C++编译器(如GCC)
  2. OpenCV库(用于图像处理)
  3. YOLOv模型文件(.cfg和.weights文件)

您可以通过以下命令在Ubuntu上安装OpenCV:

sudo apt-get update
sudo apt-get install libopencv-dev

2.1 下载YOLO模型

首先,您需要下载YOLO的配置文件和权重文件。您可以从以下链接获取这些文件:

  • YOLO配置文件(.cfg)
  • YOLO权重文件(.weights)

将这些文件放在您的项目目录中。如果计算机性能较差,可以直接使用训练好的模型,直接调用:C++版本的YOLO文件。

三、关键要点

  • YOLO是一种先进的实时对象检测系统,能够在单次前向传递中预测多个对象。
  • 使用OpenCV的DNN模块可以方便地加载和运行YOLO模型。
  • 提供的示例代码展示了如何使用C++实现YOLO图像分类,并进行了详细的注释。
  • 相关的仓库可以帮助获取模型文件、更多的示例代码和文档。

3.1 示例代码

接下来,让我们来看一个使用YOLO和C++进行图像分类的简单示例代码。您可以参考这篇文章获取详细的代码实现。

以下是一个基本的代码示例:

#include <opencv2/opencv.hpp>
#include <fstream>
#include <iostream>
#include <vector>

// 载入模型和配置文件
std::string modelConfiguration = "yolov.cfg";
std::string modelWeights = "yolov.weights";
cv::dnn::Net net = cv::dnn::readNetFromDarknet(modelConfiguration, modelWeights);

void classifyImage(const std::string& imagePath) {
    // 读取图像
    cv::Mat frame = cv::imread(imagePath);
    if (frame.empty()) {
        std::cerr << "Could not read the image: " << imagePath << std::endl;
        return;
    }

    // 图像预处理
    cv::Mat blob;
    cv::dnn::blobFromImage(frame, blob, 1/255.0, cv::Size(416, 416), cv::Scalar(0, 0, 0), true, false);

    // 设置输入
    net.setInput(blob);

    // 前向传播获取结果
    std::vector<cv::Mat> outs;
    net.forward(outs, net.getUnconnectedOutLayersNames());

    // 解析结果
    for (const auto& out : outs) {
        for (int i = 0; i < out.rows; i++) {
            // 解析每个检测结果
            const auto* data = out.ptr<float>(i);
            // 此处省略详细的解析代码
        }
    }

    // 显示结果
    cv::imshow("Image", frame);
    cv::waitKey(0);
}

int main() {
    std::string imagePath = "path_to_your_image.jpg";
    classifyImage(imagePath);
    return 0;
}

3.2 性能评估

在COCO数据集上的训练效果如下:

ModelGPUModeInference Time
Yolov3-416GTX 1060Caffe54.593ms
Yolov3-416GTX 1060float3223.817ms
Yolov3-416GTX 1060int811.921ms
Yolov3-608GTX 1060Caffe88.489ms
Yolov3-608GTX 1060float3243.965ms
Yolov3-608GTX 1060int821.638ms
Yolov3-608GTX 1080 Tifloat3219.353ms
Yolov3-608GTX 1080 Tiint89.727ms
Yolov3-416GTX 1080 Tifloat329.677ms
Yolov3-416GTX 1080 Tiint86.129ms

3.3 评估结果

ModelGPUModeDatasetMAP(0.50)MAP(0.75)
Yolov3-416GTX 1060Caffe(fp32)COCO val201450.3333.00
Yolov3-416GTX 1060float32COCO val201450.2732.98
Yolov3-416GTX 1060int8COCO val201444.1530.24
Yolov3-608GTX 1060Caffe(fp32)COCO val201452.8935.31
Yolov3-608GTX 1060float32COCO val201452.8435.26
Yolov3-608GTX 1060int8COCO val201448.5535.53

四、 相关仓库

以下是一些与YOLO相关的仓库,这些仓库提供了模型文件、示例代码以及文档:

  1. Darknet:YOLO的原始实现,可以在此找到模型配置文件和权重文件。
  2. AlexeyAB/darknet:Darknet的一个常用分支,提供了更多的功能和优化。
  3. opencv/opencv:OpenCV库,提供了对YOLO的DNN模块支持。
    在这里插入图片描述

完整的测试练习demo

五、结论

通过本文,您了解了如何利用YOLO模型和C++进行图像分类。我们从环境搭建开始,逐步讲解了模型文件的下载和示例代码的实现。希望这些内容能对您的项目有所帮助。如果您有任何问题或建议,请随时在评论区留言。

最后,最后
如果觉得有用,麻烦三连👍⭐️❤️支持一下呀,希望这篇文章可以帮到你,你的点赞是我持续更新的动力

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1795157.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

问你为什么选择Kafka,你会怎么回答?

可靠的含义在百度百科的解释是&#xff1a;可以信赖、可以相信、可靠的朋友。那Kafka究竟是不是一个可靠的朋友呢&#xff1f;既然全世界绝大部分高可用系统都有Kafka的支持&#xff0c;Kafka必定有其过人之处&#xff0c;跟着我来分析分析。 另外多提一嘴Kafka在GitHub目前已…

HTTP-一

一、超文本传输 1. 文本传输 > 字符串(能在utf8/gbk等码表上找到合法字符) 2. 超文本传输 > 不仅仅是字符串,还可以携带一些图片,特殊得格式 HTML 3. 富文本 word http0.9 -> http1.0 -> http1.1 -> http2.0 -> http3.0 http1.0是主流版本 2.0 和…

任务3.7 开发名片管理系统

本实战项目以Java语言为基础&#xff0c;精心打造了一个功能全面的名片管理系统。系统采用面向对象的设计原则&#xff0c;通过Card类来封装每张名片的详细信息&#xff0c;如姓名、单位、职位和联系电话等&#xff0c;并提供了标准的访问器和修改器方法以确保数据的安全访问。…

course-nlp——8-translation-transformer

本文参考自https://github.com/fastai/course-nlp。 注意力机制和 Transformer Nvidia AI 研究员 Chip Huyen 写了一篇很棒的文章《Top 8 trends from ICLR 2019》&#xff0c;其中的趋势之一是 RNN 正在失去研究人员的青睐。 这是有原因的&#xff0c;RNN 可能很麻烦&#…

2938. 区分黑球与白球

题目 桌子上有 n 个球&#xff0c;每个球的颜色不是黑色&#xff0c;就是白色。 给你一个长度为 n 、下标从 0 开始的二进制字符串 s&#xff0c;其中 1 和 0 分别代表黑色和白色的球。 在每一步中&#xff0c;你可以选择两个相邻的球并交换它们。 返回「将所有黑色球都移到…

网工内推 | 网络运维工程师,H3CIE认证优先,13薪,享股票期权

01 畅读 &#x1f537;招聘岗位&#xff1a;高级网络运维工程师 &#x1f537;职责描述&#xff1a; 1.负责线上业务网络技术运维工作&#xff0c;保障并优化线上网络质量&#xff1b; 2.规划并构建公司线上业务网络架构&#xff1b; 3.规划线上业务网络质量评估与监控体系&…

信号:干扰类别及特征提取

目录 第一部分&#xff1a;干扰类别 1.压制干扰 1.1噪声调幅瞄准式干扰(单音干扰) 1.2噪声调频阻塞式干扰&#xff08;宽带噪声干扰&#xff09; 1.3噪声调频扫频式干扰&#xff08;线性调频&#xff09; 2.欺骗干扰 2.1距离欺骗干扰&#xff08;幅度调制干扰&#xff0…

关于main函数参数列表的那些事

写在最前面&#xff1a; 本篇博客所写代码&#xff0c;全部都依赖于Linux环境。 在开始之前&#xff0c;我们先问自己几个问题&#xff1a; main函数可以传参吗?如果main函数可以传参&#xff0c;最多可以传几个参数。main函数传递的参数具体作用是什么&#xff1f; 一.是否…

java小游戏-坦克大战1.0

文章目录 游戏界面样式游戏需求分析设计类过程1&#xff1a;初始化界面过程2&#xff1a;用面向对象思想设置功能过程3&#xff1a;调用类实例化对象过程4&#xff1a;联合调试 项目代码下载&#xff1a; CSDN_java小游戏-坦克大战1.0 来源&#xff1a;该游戏来自尚学堂~&…

神了,Suno创作的《不期待》三个版本,你最喜欢哪一个?

Suno AI 最近尝试了下 Suno AI 的v3.5模型&#xff0c;有点惊艳 做了三首版本的AI歌曲&#xff0c;词是我写的&#xff0c;其他全都交给Suno了&#xff0c;欢迎大家来听听 B站链接 Youtube链接

源码文章上传无忧,论坛小程序支持

前言 在数字化时代&#xff0c;知识的分享与传播显得愈发重要。为了满足广大创作者和求知者的需求&#xff0c;我们推出了全新的论坛小程序&#xff0c;不仅支持文章、源码、链接等多样化内容的上传&#xff0c;还实现了付费观看功能&#xff0c;为创作者们提供了一个展示才华…

flask 之JWT认证实现

目录 1、JWT 1.1、JWT概述 1.2、token的生成 1.3、token校验 1.4、flask项目中实现JWT认证 1、JWT 1.1、JWT概述 JWT&#xff08;JSON Web Token&#xff09;是一种用于身份验证和授权的开放标准。它由三部分组成&#xff0c;分别是头部、负载和签名。 头部&#xff0…

第三方软件测试机构与CMA、CNAS资质

第三方软件测试机构 随着信息技术的快速发展&#xff0c;软件在各个领域的应用越来越广泛&#xff0c;软件的质量和安全性成为人们关注的焦点。为了确保软件的质量和安全性&#xff0c;第三方软件测试机构和CMA、CNAS资质成为了重要的保障。 第三方软件测试机构是独立于软件开…

python调用excel的demo

在本地安装Pycharm之后&#xff0c;新建工程&#xff0c;在main.py中键入如下代码,即可实现Python调用excel&#xff1a; import pandas as pd sheet pd.read_excel(test.xlsx) data sheet.loc[0].values print("读取指定行的数据:\n{0}".format(data)) 第一次编…

如何将 MySQL 数据库共享给他人?

文章目录 共享所有数据库给他人1. 连接到 MySQL 数据库2. 选择要使用的数据库3. 修改连接所需的 host4. 刷新权限 共享部分数据库给他人1. 创建用户2. 授权3. 刷新权限 结语 &#x1f389;欢迎来到Java学习路线专栏~探索Java中的静态变量与实例变量 ☆* o(≧▽≦)o *☆嗨~我是I…

JVMの静、动态绑定异常捕获JIT即时编译

在说明静态绑定和动态绑定之前&#xff0c;我们首先要了解在字节码指令的层面&#xff0c;JVM是如何调用方法的&#xff1a; 例如我有以下的代码&#xff0c;很简单就是在main方法中调用了另一个静态方法&#xff1a; public class MethodTest {public static void main(Strin…

git clone 文件名中文、有冒号等问题 fatal: repository ‘***/r/鏍″洯鏅烘収椋熷爞/.git/‘ not found

记录一个git问题&#xff0c;比较有意思&#xff0c;也比较难找。 背景 首先把代码拉下来&#xff0c;发现给我报错。 怀疑 刚开始以为是仓库地址变了&#xff0c;但是发现仓库地址并没有变过。 交流 然后寻找解决方案。因为同事也遇到过&#xff0c;同事交了我一招&…

数据结构第三篇【链表的相关知识点一及在线OJ习题】

数据结构第三篇【链表的相关知识点一及在线OJ习题】 链表链表的实现链表OJ习题顺序表和链表的区别和联系 本文章主要讲解关于链表的相关知识&#xff0c;喜欢的可以三连喔 &#x1f600;&#x1f603;&#x1f604;&#x1f604;&#x1f60a;&#x1f60a;&#x1f643;&#…

【iOS】——Runtime学习

文章目录 一、Runtime介绍二、Runtime消息传递三、实例对象、类对象、元类对象四、isa_t结构体的具体实现五、cache_t的具体实现六、class_data_bits_t的具体实现七、Runtime消息转发动态方法解析备用接收者完整消息转发 一、Runtime介绍 iOS的Runtime&#xff0c;通常称为Obj…

GitHub飙升!京东认证的“Python编程入门三剑客”究竟好在哪?

Python凭借着简单易学、功能强大&#xff0c;已经跃居TIOB编程语言榜首&#xff0c;并且已经开始了它的霸榜之旅。如何选择一套适合自己的Python学习教程&#xff0c;是每个Python爱好者面临的首要问题。 今天给小伙伴们带来的是图灵&京东认证的“Python编程入门三剑客”&…