背包问题其实有很多种,01背包是最基础也是最经典的,软工计科学生一定要掌握的。
01背包问题
代码随想录
视频讲解:带你学透0-1背包问题!| 关于背包问题,你不清楚的地方,这里都讲了!| 动态规划经典问题 | 数据结构与算法_哔哩哔哩_bilibili
思路
直接上动态规划五部曲
1、dp数组及其下标的含义
对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
2.确定递推公式
再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
那么可以有两个方向推出来dp[i][j],
- 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
- 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
3.初始化
首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。
再看其他情况。
状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。
dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。
当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
4.确定遍历顺序
在如下图中,可以看出,有两个遍历的维度:物品与背包重量
那么问题来了,先遍历 物品还是先遍历背包重量呢?
其实都可以!! 但是先遍历物品更好理解。
5.举例验证,直接看链接里的吧。
代码
def test_2_wei_bag_problem1():
weight = [1, 3, 4]
value = [15, 20, 30]
bagweight = 4
# 二维数组
dp = [[0] * (bagweight + 1) for _ in range(len(weight))]
# 初始化
for j in range(weight[0], bagweight + 1):
dp[0][j] = value[0]
# weight数组的大小就是物品个数
for i in range(1, len(weight)): # 遍历物品
for j in range(bagweight + 1): # 遍历背包容量
if j < weight[i]:
dp[i][j] = dp[i - 1][j]
else:
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
print(dp[len(weight) - 1][bagweight])
test_2_wei_bag_problem1()
01背包滚动数组
代码随想录
视频讲解:带你学透01背包问题(滚动数组篇) | 从此对背包问题不再迷茫!_哔哩哔哩_bilibili
看链接吧,老是复制粘贴累了。
416.分割等和子集
本题是 01背包的应用类题目代码随想录
视频讲解:动态规划之背包问题,这个包能装满吗?| LeetCode:416.分割等和子集_哔哩哔哩_bilibili
思路
就是01背包的应用,背包的大小是总和的一半,遍历每一个物品,看看遍历到最后能不能装满这个背包。
代码(二维版本在链接里)
class Solution:
def canPartition(self, nums: List[int]) -> bool:
if sum(nums) % 2 != 0:
return False
target = sum(nums) // 2
dp = [0] * (target + 1)
for num in nums:
for j in range(target, num-1, -1):
dp[j] = max(dp[j], dp[j-num] + num)
return dp[-1] == target