Locality-aware subgraphs for inductive link prediction in knowledge graphs

news2024/11/20 12:34:12

Locality-aware subgraphs for inductive link prediction in knowledge graphs

a b s t r a c t

最近的知识图(KG)归纳推理方法将链接预测问题转化为图分类任务。 他们首先根据目标实体的 k 跳邻域提取每个目标链接周围的子图,使用图神经网络 (GNN) 对子图进行编码,然后学习将子图结构模式映射到链接存在的函数。 尽管这些方法取得了巨大的成功,但增加 k 通常会导致邻域呈指数扩张,从而因过度平滑而降低 GNN 的表达能力。 在本文中,我们将子图提取制定为局部聚类过程,旨在基于个性化 PageRank (PPR) 方法对目标链接周围紧密相关的子图进行采样。 根据经验,在三个现实世界的 KG 上,我们表明,对基于 PPR 的局部聚类提取的子图进行推理可以产生比依赖固定跳距离内的邻居更准确的链接预测模型。 此外,我们研究了平均聚类系数和节点度等图属性,并表明这些属性与基于子图的链接预测的性能之间存在关系。

1. Introduction

GNN 在集成节点特征和捕获大型复杂图中的拓扑模式时存在一些局限性 [19-22]。 因此,增加目标链接周围邻域的大小不会提高(或可能降低)GNN 的预测性能。 在本文中,我们试图解决对目标链路周围的局部感知子图进行推理是否可以比对通过固定跳数提取的子图进行推理产生更高的链路预测精度。

我们使用 PPR 围绕给定种子节点(目标链接的头部和尾部)执行局部偏置随机游走,这使我们能够对目标链接图中节点的重要性进行排名。 然后,我们依靠 PPR 分数来提取目标链接附近的局部和密集子图,用于所提出的基于 GNN 的链接预测模型的训练和推理阶段。

本文贡献:

  1. 引入一种名为 LCILP(归纳链接预测的局部聚类)的新策略,通过对基于 PPR 的局部聚类技术提取的局部感知子图进行推理来进行归纳链接预测。
  2. 研究图属性和我们提出的方法之间的关系。 我们证明了图的平均聚类系数、平均节点度和链路预测的性能之间存在关系。

3. Approach

在这里插入图片描述

(1)使用基于 PPR 的局部聚类技术提取 u 和 v 周围的子图,
(2)标记提取的子图节点,
(3)使用 GNN 模型对子图进行编码 ,
(4)对子图进行评分。

3.1. Step 1: subgraph extraction

在这里插入图片描述

子图提取由两个步骤组成:首先,根据节点与给定种子集(代表目标实体)的接近度对节点进行评分。 其次,按节点得分的降序考虑节点以创建嵌套的本地集群,然后可以使用优度度量对其进行评估。 PPR,也称为随机游走与重启,是衡量节点重要性的最常见的评分方法之一。 我们使用近似 PPR 来克服 PPR 计算成本昂贵的问题。 如算法 1 所示,我们根据种子集 = { u , v }(两个节点) 对图 G 的顶点进行排序。 近似参数维护两个向量:解向量 p 和残差向量 r,其中 p 向量是 PPR 向量的近似值,向量 r 包含近似误差。 隐形传态概率 α 控制我们从种子集的邻域中合并的信息量。 也就是说,当 α 的值接近 1 时,随机游走传送到种子节点的频率更高,因此我们更加重视节点的直接邻域。 随着 α 值的减小,我们反而更加重视种子节点的扩展(多跳)邻域。

3.2. Step 2: node labeling

们为子图中的每个实体(节点)定义一个与实体无关的嵌入。 按照 [15] ,目标关系的 u 和 v 节点周围的子图中的每个节点 i 都用元组 (d(i, u ) , d(i, v )) 标记,其中 d(i, u ) 是 节点 i 和 u 之间的最短距离(对于 d(i, v ) 也是如此)。 两个目标节点 u 和 v 被标记为 (0, 1) 和 (1, 0),以便模型可识别。 该方案捕获子图中每个节点相对于目标链接的位置。 在这里插入图片描述

3.3. Step 3: subgraph embedding

在这里插入图片描述在这里插入图片描述

3.4. Step 4: scoring and loss function

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1791457.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker最新超详细版教程通俗易懂

文章目录 一、Docker 概述1. Docker 为什么出现2. Docker 的历史3. Docker 能做什么 二、Docker 安装1. Docker 的基本组成2. 安装 Docker3. 阿里云镜像加速4. 回顾 hello-world 流程5. 底层原理 三、Docker 的常用命令1. 帮助命令2. 镜像命令dokcer imagesdocker searchdocker…

【云岚家政】-day00-开发环境配置

文章目录 1 开发工具版本2 IDEA环境配置2.1 编码配置2.2 自动导包设置2.3 提示忽略大小写2.4 设置 Java 编译级别 3 Maven环境3.1 安装Maven3.2 配置仓库3.3 IDEA中配置maven 4 配置虚拟机4.1 导入虚拟机4.2 问题 5 配置数据库环境5.1 启动mysql容器5.2 使用MySQL客户端连接数据…

GPT革命:AI如何重塑我们的未来!

GPT革命:AI如何重塑我们的未来! 😄生命不息,写作不止 🔥 继续踏上学习之路,学之分享笔记 👊 总有一天我也能像各位大佬一样 🏆 博客首页 怒放吧德德 To记录领地 🌝分享…

视创云展元宇宙虚拟展厅,带来沉浸式的逛展体验!

近年来,随着科技的飞速发展和市场需求的不断演变,众多企业纷纷将目光转向线上虚拟展厅的建设。视创云展元宇宙虚拟展厅凭借其创新性和实用性,为众多企业带来了前所未有的宣传体验,成为了商企展示自我、推广产品的全新舞台。 与传统…

K210视觉识别模块学习笔记4: 训练与使用自己的模型_识别字母

今日开始学习K210视觉识别模块: 模型训练与使用_识别字母 亚博智能的K210视觉识别模块...... 固件库: maixpy_v0.6.2_52_gb1a1c5c5d_minimum_with_ide_support.bin 文章提供测试代码讲解、完整代码贴出、测试效果图、测试工程下载 这里也算是正式开始进入到视觉识别的领域了…

DNF手游辅助职业推荐:魔道学者云手机辅助玩法攻略!

在DNF手游中,魔道学者是一个独特且强力的辅助职业,深受玩家喜爱。她不仅能提供强大的辅助效果,还拥有丰富的技能机制。本文将简要介绍魔道学者的辅助玩法,推荐适合的装备和技能搭配,帮助玩家更好地掌握这一职业。 魔道…

【Linux 网络编程】网络的背景、协议的分层知识!

文章目录 1. 计算机网络背景2. 认识 "协议"3. 协议分层 1. 计算机网络背景 网络互联: 多台计算机连接在一起, 完成数据共享; 🍎局域网(LAN----Local Area Network): 计算机数量更多了, 通过交换机和路由器连接。 🍎 广…

【Java数据结构】详解LinkedList与链表(二)

目录 1.❤️❤️前言~🥳🎉🎉🎉 2.反转一个单链表 3. 找到链表的中间节点 4.输入一个链表,输出该链表中倒数第k个结点。 5.合并两个有序链表 6.链表分割 7. 判定链表的回文结构 8.输入两个链表,找…

【Centos7】解决 CentOS 7 中出现 “xx: command not found“ 错误的全面指南

【Centos7】初探xx:command not found解决方案 大家好 我是寸铁👊 【Centos7】解决 CentOS 7 中出现 “xx: command not found” 错误的全面指南✨ 喜欢的小伙伴可以点点关注 💝 前言 经常有小伙伴问我,xx:command not found怎么办&#xff1…

超实惠的GPU云服务器安利!!

自己一个人抱着老笔记本学深度学习,没有GPU是真的难受。Colab用过,GPU稍微用用就被剥夺了。华为云在培训的时候也用过,好贵。现在学到大模型,cuda10.1举步维艰。 失眠在网上冲浪,刷到了潞晨云,一块六就能用…

强烈安利10款手机App!

AI视频生成:小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频https://aitools.jurilu.com/ 1.听书神器——昊昊听书 昊昊听书app是一款专门为用户提供有声读物的应用程序。它不仅提供了各种类型的有声书籍,还有各种知名的电…

2024年6月2日 (周日) 叶子游戏新闻

中医百科中药: 中医百科中药是一款非常强大的中药知识科普软件,该应用提供500多味中草药的文献资料,强大的搜索功能可根据功效、特点和关键词来快速查找中药,而且每味中药的图片、功效、主治、炮制方法等百科知识,可以很好的帮助你…

使用 Logback.xml 配置文件输出日志信息

官方链接:Chapter 3: Configurationhttps://logback.qos.ch/manual/configuration.html 配置使用 logback 的方式有很多种,而使用配置文件是较为简单的一种方式,下述就是简单描述一个 logback 配置文件基本的配置项: 由于 logba…

王道408数据结构CH4_串

概述 4 串 4.1 串的实现 4.1.1 存储结构 定长顺序存储 #define Maxsize 255typedef struct{char *ch[Maxsize];int length; }SString;堆分配存储 typedef struct{char *ch;int length; }HString;块链存储 4.1.2 基本操作 4.2 模式匹配(子串定位) 4.2.…

单元测试的心法分享

大家好,我是G探险者! 今天我们简单聊聊单元测试的哪些事儿~ 两天时间我玩明白了单元测试的套路。 这里我分享一下思路。 在我眼里单元测试室什么? 请看这张草图: 单元测试主要关注单个代码单元(通常是类或方法&am…

小熊家务帮day13-day14 门户管理(ES搜索,Canal+MQ同步,索引同步)

目录 1 服务搜索1.1 需求分析1.2 技术方案1.2.1 使用Elasticsearch进行全文检索(为什么数据没有那么多还要用ES?)1.2.2 索引同步方案1.2.2.1 Canal介绍1.2.2.1 Canal工作原理 1 服务搜索 1.1 需求分析 服务搜索的入口有两处: 在…

Threejs加载DOM+CSS到场景中,实现3D场景展示2D平面的效果

1. 前言 本篇文章主要实现了将DOM元素转换为Threejs可以使用的数据结构,使用CSS2DRenderer渲染器渲染这些DOMCSS的平面,使其可以作为一个物体添加到Threejs场景里 如下效果图: 2. 实现步骤 首先创建一个ThreejsVueVite的项目,作为本次的demo项目下载Threejs第三方库 yarn…

信息学奥赛初赛天天练-20-完善程序-vector数组参数引用传递、二分中值与二分边界应用的深度解析

PDF文档公众号回复关键字:20240605 1 2023 CSP-J 完善程序1 完善程序(单选题,每小题 3 分,共计 30 分) 原有长度为 n1,公差为1等升数列,将数列输到程序的数组时移除了一个元素,导致长度为 n 的开序数组…

[Moveith控制问题]:Failed to fetch current robot state报错分析及解决办法

问题描述: 在使用Moveit获取机械臂关节角度时,有时会遇到如下错误信息: 原因分析: 出现这一错误的原因主要在于Moveit的状态监视器在处理回调函数 planning_scene_monitor::CurrentStateMonitor::jointStateCallback 中传入的联合…

【EFK日志系统】docker一键部署filebeat、metricbeat

docker一键部署filebeat、metricbeat filebeat部署创建配置文件一键启动修改配置文件查验信息 metricbeat部署创建配置文件一键启动修改配置文件查验信息 上两篇文章写了搭建部署es集群和部署kibana 这篇写一键部署filebeat和metricbeat收集工具 规划服务器是 es01:172.23.16…