K210视觉识别模块学习笔记4: 训练与使用自己的模型_识别字母

news2025/1/13 3:30:42

今日开始学习K210视觉识别模块: 模型训练与使用_识别字母

亚博智能的K210视觉识别模块......  

固件库: maixpy_v0.6.2_52_gb1a1c5c5d_minimum_with_ide_support.bin

文章提供测试代码讲解、完整代码贴出、测试效果图、测试工程下载

这里也算是正式开始进入到视觉识别的领域了,先从训练模型 与 识别字母开始吧......

本文目标很简单,就是尝试训练自己的模型识别字母A与B

目录

工具软件准备:

工具软件打包下载:

拍摄图片:

文件与图片处理:

新建文件夹:

Image_tool 图片处理:

labeling软件标注训练集:

打开文件夹:

更改保存输出:

打开自动保存:

框注限制识别的区域:

检查xml文件夹:

labels填写标签:

网站创建项目:

部署模型文件:

修改主函数:

测试程序前有些固件问题需要调整:

下载适配的固件:

先擦除固件:

然后使用kflash_kui烧录以下固件库到flash:

重启开机测试效果展示:

固件与模型打包下载:

网上学习资料贴出:

OpenCV Label标注软件

之前尝试下载使用多个固件的尝试:


工具软件准备:

自己训练模型主要有俩个工具软件需要准备:

1、  Image_tool  (用于图像格式清晰度转换)

2、   labelImg(用于打标签)

工具软件打包下载:

当然你也可以不使用和我一样的工具软件,网上有许多各种各样的功能更多的软件:(文末有链接可以了解其他软件)

https://download.csdn.net/download/qq_64257614/89383899

拍摄图片:

1、确保拍摄角度与实际应用场景相匹配。

2、如果可能,模拟K210模块如何查看这些图片。即使用K210来取图,(这需要自己编程K210拍摄图片的例程):

K210视觉识别模块学习笔记3:内存卡写入拍摄图片_LED三色灯的操作_按键操作_定时器的配置使用-CSDN博客

3、光线要充足且均匀,避免过曝或欠曝,以及阴影和反光。

4、拍摄不同角度、不同光照条件、不同背景、不同大小和形状的图像,以增加模型的泛化能力。

5、考虑图像的各种旋转、缩放和倾斜,以模拟实际应用中的变化。

这里我也是拍摄了一共25张AB各个角度的照片:

文件与图片处理:

新建文件夹:

像我一样新建一个文件夹   (这个文件夹名称任意)

但是在里面新建以下的几个项目名称必须一致:

Image_tool 图片处理:

这个是选择图像所在文件夹进行转换的:

转换完成会在图像目录产生一个新的文件夹inages_out

然后我们删掉原来的文件夹,将"inages_out"名称改为"inages"

labeling软件标注训练集:

注意点:

有些人可能会出现双击程序,弹出了一个命令控制台,结果2秒就退出,无法打开labeling的情况,这时应检查它的所在目录有无中文字符,如果有,请不要放在有中文字符的目录!

其余打不开情况请检查你的Python环境

打开文件夹:

更改保存输出:

打开自动保存:

框注限制识别的区域:

然后像这样将图片中所有A\B都框柱出来:

检查xml文件夹:

全部标注完后应该有相应数量的xml文件生成在文件夹:

labels填写标签:

这一步是要在之前创建的labels.txt中填写我们用到的标注:

我们用到了A\B,俩个标注用换行隔开

网站创建项目:

在线训练模型网址如下:

 MaixHub

 先准备好之前整个文件准备的压缩包(zip格式):

跟着以下步骤进行点击创建:
 

我们发现其实这个网站也可以进行数据标注:

然后回到刚才的项目,选择了数据集后创建任务:

这里我也没研究这些参数有何意义,但我问了AI,并将它的解释放在下文:

  1. 迭代次数(Epochs)
    • 迭代次数决定了模型在整个数据集上训练的次数。
    • 如果迭代次数太少,模型可能无法充分学习数据的特征;如果迭代次数太多,模型可能会过拟合。
    • 建议从较小的迭代次数开始(如10个epochs),然后根据验证集的性能逐渐增加。
  2. 批数据量大小(Batch Size)
    • 批数据量大小决定了在更新模型参数之前用于计算梯度损失的数据样本数量。
    • 较大的批数据量可以加速训练,但可能会消耗更多的内存;较小的批数据量可以更有效地适应不同的数据分布,但可能会降低训练速度。
    • 根据硬件资源和数据集大小选择合适的批数据量大小,常见的选择包括32、64、128等。
  3. 最大学习率(Learning Rate)
    • 学习率决定了模型参数在每次迭代中更新的幅度。
    • 如果学习率太大,模型可能无法收敛;如果学习率太小,训练可能会非常缓慢。
    • 可以使用学习率衰减策略(如指数衰减、余弦衰减等),在训练过程中逐渐减小学习率。
    • 初始学习率的选择通常需要根据实验来确定,常见的选择包括0.01、0.001等。
  4. 标注框限制(Bounding Box Constraints)
    • 在目标检测任务中,标注框限制可能涉及标注框的大小、比例或位置等。
    • 这些限制可以根据具体任务和数据集进行调整,以确保标注框的准确性和一致性。
  5. 数据均衡(Data Balancing)
    • 如果数据集中不同类别的样本数量差异很大,可能会导致模型对某些类别的识别性能较差。
    • 可以使用数据均衡技术(如过采样少数类、欠采样多数类等)来平衡不同类别的样本数量。
  6. 标准化平均值(Mean Normalization)和标准差(Standard Deviation Normalization)
    • 在数据预处理阶段,对输入数据进行标准化可以提高模型的训练速度和性能。
    • 标准化平均值和标准差通常根据训练数据的统计信息来确定。对于图像数据,常见的做法是对每个颜色通道分别计算平均值和标准差,并在输入模型之前将数据减去平均值并除以标准差。

需要注意的是,以上参数的具体调整值需要根据实际任务和数据集进行确定。在训练过程中,可以使用交叉验证、早停(Early Stopping)等技术来监控模型的性能,并根据验证集的性能调整训练参数。此外,还可以使用网格搜索(Grid Search)等调参方法来系统地搜索最佳参数组合。

 

就是需要我们调整各个参数进行训练,使得准确率提升:

像我这就最终通过多次调整参数训练出来了100准确率的模型了:

然后就是训练出高准确率的模型后,选择手动部署模型,来下载模型文件:

部署模型文件:

解压模型后直接把内容都复制到SD卡:

修改主函数:

它的主函数写的有些问题,需要我们添加一行代码在头部:

from machine import UART

 

测试程序前有些固件问题需要调整:

K210固件库支持多下载码(或称为多固件、多版本固件)

下载适配的固件:

先擦除固件:

然后使用kflash_kui烧录以下固件库到flash:

maixpy_v0.6.2_52_gb1a1c5c5d_minimum_with_ide_support.bin

重启开机测试效果展示:

固件与模型打包下载:

https://download.csdn.net/download/qq_64257614/89385496

网上学习资料贴出:

K210 Mx-yolov3模型训练和物体识别-CSDN博客

[教程]从0自制模型,实现多物体识别(以k210多数字识别举例)_哔哩哔哩_bilibili

OpenCV Label标注软件

之前尝试下载使用多个固件的尝试:

之前尝试过下载多个固件,但貌似没法使用......

也许只是我操作不太对......

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1791450.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DNF手游辅助职业推荐:魔道学者云手机辅助玩法攻略!

在DNF手游中,魔道学者是一个独特且强力的辅助职业,深受玩家喜爱。她不仅能提供强大的辅助效果,还拥有丰富的技能机制。本文将简要介绍魔道学者的辅助玩法,推荐适合的装备和技能搭配,帮助玩家更好地掌握这一职业。 魔道…

【Linux 网络编程】网络的背景、协议的分层知识!

文章目录 1. 计算机网络背景2. 认识 "协议"3. 协议分层 1. 计算机网络背景 网络互联: 多台计算机连接在一起, 完成数据共享; 🍎局域网(LAN----Local Area Network): 计算机数量更多了, 通过交换机和路由器连接。 🍎 广…

【Java数据结构】详解LinkedList与链表(二)

目录 1.❤️❤️前言~🥳🎉🎉🎉 2.反转一个单链表 3. 找到链表的中间节点 4.输入一个链表,输出该链表中倒数第k个结点。 5.合并两个有序链表 6.链表分割 7. 判定链表的回文结构 8.输入两个链表,找…

【Centos7】解决 CentOS 7 中出现 “xx: command not found“ 错误的全面指南

【Centos7】初探xx:command not found解决方案 大家好 我是寸铁👊 【Centos7】解决 CentOS 7 中出现 “xx: command not found” 错误的全面指南✨ 喜欢的小伙伴可以点点关注 💝 前言 经常有小伙伴问我,xx:command not found怎么办&#xff1…

超实惠的GPU云服务器安利!!

自己一个人抱着老笔记本学深度学习,没有GPU是真的难受。Colab用过,GPU稍微用用就被剥夺了。华为云在培训的时候也用过,好贵。现在学到大模型,cuda10.1举步维艰。 失眠在网上冲浪,刷到了潞晨云,一块六就能用…

强烈安利10款手机App!

AI视频生成:小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频https://aitools.jurilu.com/ 1.听书神器——昊昊听书 昊昊听书app是一款专门为用户提供有声读物的应用程序。它不仅提供了各种类型的有声书籍,还有各种知名的电…

2024年6月2日 (周日) 叶子游戏新闻

中医百科中药: 中医百科中药是一款非常强大的中药知识科普软件,该应用提供500多味中草药的文献资料,强大的搜索功能可根据功效、特点和关键词来快速查找中药,而且每味中药的图片、功效、主治、炮制方法等百科知识,可以很好的帮助你…

使用 Logback.xml 配置文件输出日志信息

官方链接:Chapter 3: Configurationhttps://logback.qos.ch/manual/configuration.html 配置使用 logback 的方式有很多种,而使用配置文件是较为简单的一种方式,下述就是简单描述一个 logback 配置文件基本的配置项: 由于 logba…

王道408数据结构CH4_串

概述 4 串 4.1 串的实现 4.1.1 存储结构 定长顺序存储 #define Maxsize 255typedef struct{char *ch[Maxsize];int length; }SString;堆分配存储 typedef struct{char *ch;int length; }HString;块链存储 4.1.2 基本操作 4.2 模式匹配(子串定位) 4.2.…

单元测试的心法分享

大家好,我是G探险者! 今天我们简单聊聊单元测试的哪些事儿~ 两天时间我玩明白了单元测试的套路。 这里我分享一下思路。 在我眼里单元测试室什么? 请看这张草图: 单元测试主要关注单个代码单元(通常是类或方法&am…

小熊家务帮day13-day14 门户管理(ES搜索,Canal+MQ同步,索引同步)

目录 1 服务搜索1.1 需求分析1.2 技术方案1.2.1 使用Elasticsearch进行全文检索(为什么数据没有那么多还要用ES?)1.2.2 索引同步方案1.2.2.1 Canal介绍1.2.2.1 Canal工作原理 1 服务搜索 1.1 需求分析 服务搜索的入口有两处: 在…

Threejs加载DOM+CSS到场景中,实现3D场景展示2D平面的效果

1. 前言 本篇文章主要实现了将DOM元素转换为Threejs可以使用的数据结构,使用CSS2DRenderer渲染器渲染这些DOMCSS的平面,使其可以作为一个物体添加到Threejs场景里 如下效果图: 2. 实现步骤 首先创建一个ThreejsVueVite的项目,作为本次的demo项目下载Threejs第三方库 yarn…

信息学奥赛初赛天天练-20-完善程序-vector数组参数引用传递、二分中值与二分边界应用的深度解析

PDF文档公众号回复关键字:20240605 1 2023 CSP-J 完善程序1 完善程序(单选题,每小题 3 分,共计 30 分) 原有长度为 n1,公差为1等升数列,将数列输到程序的数组时移除了一个元素,导致长度为 n 的开序数组…

[Moveith控制问题]:Failed to fetch current robot state报错分析及解决办法

问题描述: 在使用Moveit获取机械臂关节角度时,有时会遇到如下错误信息: 原因分析: 出现这一错误的原因主要在于Moveit的状态监视器在处理回调函数 planning_scene_monitor::CurrentStateMonitor::jointStateCallback 中传入的联合…

【EFK日志系统】docker一键部署filebeat、metricbeat

docker一键部署filebeat、metricbeat filebeat部署创建配置文件一键启动修改配置文件查验信息 metricbeat部署创建配置文件一键启动修改配置文件查验信息 上两篇文章写了搭建部署es集群和部署kibana 这篇写一键部署filebeat和metricbeat收集工具 规划服务器是 es01:172.23.16…

HarmonyOS(二十四)——Harmonyos通用事件之触摸事件

1.触摸事件。 触摸事件是HarmonyOS通用事件的一种事件之一,当手指在组件上按下、滑动、抬起时触发。 名称是否冒泡功能描述onTouch(event: (event?: TouchEvent) > void)是手指触摸动作触发该回调,event返回值见下面TouchEvent介绍。 2. TouchEve…

开源VS闭源:大模型之争,究竟谁更胜一筹?

随着人工智能技术的快速发展,大模型作为其中的核心组件,已经引起了业界的广泛关注。在大模型的研发过程中,开源与闭源成为了两个备受争议的话题。究竟开源与闭源谁更好?本文将从多个角度进行深入分析,为大家揭示真相。…

【Python数据预处理系列】Pandas 数据操作实战:掌握 .loc[] 方法进行高效数据选取

文章将详细介绍.loc[]方法的各种使用场景,帮助读者深入理解并掌握这一核心功能。 在Pandas库中,.loc[]方法是一种强大而灵活的数据选取工具。本文将通过详细的步骤和示例,手把手教您如何利用这一工具进行高效的数据操作。 首先,我…

社区待就业人员信息管理系统的设计

管理员账户功能包括:系统首页,个人中心,工作岗位管理,基础数据管理,预约面试管理,就业信息管理,公告信息管理 社区工作账户功能包括:系统首页,个人中心,用户…

【Visual Studio 2022 部署 .net core website】

部署网站 AdminPortal.csproj false Website File Nameappsettings.jsonAdminPortal.deps.jsonAdminPortal.runtimeconfig.json–web.configAPI.runtimeconfig.json