难度:中等
题目:
树可以看成是一个连通且 无环 的 无向 图。
给定往一棵 n 个节点 (节点值 1~n ) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。
请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的边。
示例 1:
输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]
示例 2:
输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
提示:
n == edges.length
3 <= n <= 1000
edges[i].length == 2
1 <= ai < bi <= edges.length
ai != bi
edges 中无重复元素
给定的图是连通的
Related Topics
深度优先搜索
广度优先搜索
并查集
图
重点!!!解题思路
第一步:
明确解题手段
这种类似于连通性问题均可使用并查集来解决
第二步:
遍历数组,使用并查集连接节点,
连接之前判断一下之前是否连接过,如果连接过那么直接返回此次判断的数据
源码:
class UnionFind {
//记录每个节点的根节点
int[] parent;
//记录每个子集的节点数
int[] rank;
//记录并查集中的联通分量数量
int count;
public UnionFind(int n){
count=n;
parent=new int[n];
for (int i=0;i<n;i++){
parent[i]=i;
}
rank=new int[n];
Arrays.fill(rank,1);
}
//路径压缩
public int find(int ind){
if (parent[ind]!=ind){
parent[ind]=find(parent[ind]);
}
return parent[ind];
}
//按秩合并
public void unite(int ind1,int ind2){
int root1=find(ind1),root2=find(ind2);
if (root1!=root2){
if (rank[root1]<rank[root2]){
int temp=root2;
root2=root1;
root1=temp;
}
parent[root2]=root1;
rank[root1]+=rank[root2];
count--;
}
}
public int getCount(){
return count;
}
public boolean connected(int ind1,int ind2){
return find(ind1)==find(ind2);
}
}
class Solution {
public int[] findRedundantConnection(int[][] edges) {
UnionFind uf= new UnionFind(edges.length+1);
for (int[] edge : edges) {
int idx1=edge[0];
int idx2=edge[1];
if (!uf.connected(idx1,idx2)){
uf.unite(idx1,idx2);
}else {
return edge;
}
}
return edges[0];//因为根本判断不到这一步,所以这里写什么都可以
}
}
解题结果:
如果您还有什么疑问或解答有问题,可在下方评论,我会及时回复。
系列持续更新中,点个订阅吧