一、简单方便的 nn.DataParallel
DataParallel 可以帮助我们(使用单进程控)将模型和数据加载到多个 GPU 中,控制数据在 GPU 之间的流动,协同不同 GPU 上的模型进行并行训练(细粒度的方法有 scatter,gather 等等)。
DataParallel 使用起来非常方便,我们只需要用 DataParallel 包装模型,再设置一些参数即可。
需要定义的参数包括:
- 参与训练的 GPU 有哪些,device_ids=gpus;
- 用于汇总梯度的 GPU 是哪个,output_device=gpus[0] 。
DataParallel 会自动帮我们将数据切分 load 到相应 GPU,将模型复制到相应 GPU,进行正向传播计算梯度并汇总:
model = nn.DataParallel(model.cuda(), device_ids=gpus, output_device=gpus[0])
值得注意的是,模型和数据都需要先 load 进 GPU 中,DataParallel 的 module 才能对其进行处理,否则会报错:
# 这里要 model.cuda()
model = nn.DataParallel(model.cuda(), device_ids=gpus, output_device=gpus[0])
for epoch in range(100):
for batch_idx, (data, target) in enumerate(train_loader):
# 这里要 images/target.cuda()
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
...
output = model(images)
loss = criterion(output, target)
...
optimizer.zero_grad()
loss.backward()
optimizer.step()
汇总一下,DataParallel 并行训练部分主要与如下代码段有关:
# main.py
import torch
import torch.distributed as dist
gpus = [0, 1, 2, 3]
torch.cuda.set_device('cuda:{}'.format(gpus[0]))
train_dataset = ...
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=...)
model = ...
model = nn.DataParallel(model.to(device), device_ids=gpus, output_device=gpus[0])
optimizer = optim.SGD(model.parameters())
for epoch in range(100):
for batch_idx, (data, target) in enumerate(train_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
...
output = model(images)
loss = criterion(output, target)
...
optimizer.zero_grad()
loss.backward()
optimizer.step()
在使用时,使用 python 执行即可:
python main.py
在 ImageNet 上的完整训练代码,请点击Github[7]。
二、使用 torch.distributed 加速并行训练
在 pytorch 1.0 之后,官方终于对分布式的常用方法进行了封装,支持 all-reduce,broadcast,send 和 receive 等等。通过 MPI 实现 CPU 通信,通过 NCCL 实现 GPU 通信。官方也曾经提到用 DistributedDataParallel 解决 DataParallel 速度慢,GPU 负载不均衡的问题,目前已经很成熟了~
与 DataParallel 的单进程控制多 GPU 不同,在 distributed 的帮助下,我们只需要编写一份代码,torch 就会自动将其分配给 n 个进程,分别在 n 个 GPU 上运行。
在 API 层面,pytorch 为我们提供了 torch.distributed.launch 启动器,用于在命令行分布式地执行 python 文件。在执行过程中,启动器会将当前进程的(其实就是 GPU的)index 通过参数传递给 python,我们可以这样获得当前进程的 index:
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
args = parser.parse_args()
print(args.local_rank)
接着,使用 init_process_group 设置GPU 之间通信使用的后端和端口:
dist.init_process_group(backend='nccl')
之后,使用 DistributedSampler 对数据集进行划分。如此前我们介绍的那样,它能帮助我们将每个 batch 划分成几个 partition,在当前进程中只需要获取和 rank 对应的那个 partition 进行训练:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler)
然后,使用 DistributedDataParallel 包装模型,它能帮助我们为不同 GPU 上求得的梯度进行 all reduce(即汇总不同 GPU 计算所得的梯度,并同步计算结果)。all reduce 后不同 GPU 中模型的梯度均为 all reduce 之前各 GPU 梯度的均值:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
最后,把数据和模型加载到当前进程使用的 GPU 中,正常进行正反向传播:
torch.cuda.set_device(args.local_rank)
model.cuda()
for epoch in range(100):
for batch_idx, (data, target) in enumerate(train_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
...
output = model(images)
loss = criterion(output, target)
...
optimizer.zero_grad()
loss.backward()
optimizer.step()
汇总一下,torch.distributed 并行训练部分主要与如下代码段有关:
# main.py
import torch
import argparse
import torch.distributed as dist
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int,
help='node rank for distributed training')
args = parser.parse_args()
dist.init_process_group(backend='nccl')
torch.cuda.set_device(args.local_rank)
train_dataset = ...
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler)
model = ...
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
optimizer = optim.SGD(model.parameters())
for epoch in range(100):
for batch_idx, (data, target) in enumerate(train_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
...
output = model(images)
loss = criterion(output, target)
...
optimizer.zero_grad()
loss.backward()
optimizer.step()
在使用时,调用 torch.distributed.launch 启动器启动:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 main.py
在 ImageNet 上的完整训练代码,请点击Github[8]。
三、使用 torch.multiprocessing 取代启动器
有的同学可能比较熟悉 torch.multiprocessing,也可以手动使用 torch.multiprocessing 进行多进程控制。绕开 torch.distributed.launch 自动控制开启和退出进程的一些小毛病~
使用时,只需要调用 torch.multiprocessing.spawn,torch.multiprocessing 就会帮助我们自动创建进程。
如下面的代码所示,spawn 开启了 nprocs=4 个进程,每个进程执行 main_worker 并向其中传入 local_rank(当前进程 index)和 args(即 4 和 myargs)作为参数:
import torch.multiprocessing as mp
mp.spawn(main_worker, nprocs=4, args=(4, myargs))
这里,我们直接将原本需要 torch.distributed.launch 管理的执行内容,封装进 main_worker 函数中,其中 proc 对应 local_rank(当前进程 index),进程数 nprocs 对应 4, args 对应 myargs:
def main_worker(proc, nprocs, args):
dist.init_process_group(backend='nccl', init_method='tcp://127.0.0.1:23456', world_size=4, rank=gpu)
torch.cuda.set_device(args.local_rank)
train_dataset = ...
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler)
model = ...
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
optimizer = optim.SGD(model.parameters())
for epoch in range(100):
for batch_idx, (data, target) in enumerate(train_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
...
output = model(images)
loss = criterion(output, target)
...
optimizer.zero_grad()
loss.backward()
optimizer.step()
在上面的代码中值得注意的是,由于没有 torch.distributed.launch 读取的默认环境变量作为配置,我们需要手动为 init_process_group 指定参数:
dist.init_process_group(backend='nccl', init_method='tcp://127.0.0.1:23456', world_size=4, rank=gpu)
汇总一下,添加 multiprocessing 后并行训练部分主要与如下代码段有关:
# main.py
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
mp.spawn(main_worker, nprocs=4, args=(4, myargs))
def main_worker(proc, nprocs, args):
dist.init_process_group(backend='nccl', init_method='tcp://127.0.0.1:23456', world_size=4, rank=gpu)
torch.cuda.set_device(args.local_rank)
train_dataset = ...
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler)
model = ...
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
optimizer = optim.SGD(model.parameters())
for epoch in range(100):
for batch_idx, (data, target) in enumerate(train_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
...
output = model(images)
loss = criterion(output, target)
...
optimizer.zero_grad()
loss.backward()
optimizer.step()
在使用时,直接使用 python 运行就可以了:
python main.py
在 ImageNet 上的完整训练代码,请点击Github[9]。
四、使用 Apex 再加速
Apex 是 NVIDIA 开源的用于混合精度训练和分布式训练库。Apex 对混合精度训练的过程进行了封装,改两三行配置就可以进行混合精度的训练,从而大幅度降低显存占用,节约运算时间。此外,Apex 也提供了对分布式训练的封装,针对 NVIDIA 的 NCCL 通信库进行了优化。
在混合精度训练上,Apex 的封装十分优雅。直接使用 amp.initialize 包装模型和优化器,apex 就会自动帮助我们管理模型参数和优化器的精度了,根据精度需求不同可以传入其他配置参数。
from apex import amp
model, optimizer = amp.initialize(model, optimizer)
在分布式训练的封装上,Apex 在胶水层的改动并不大,主要是优化了 NCCL 的通信。因此,大部分代码仍与 torch.distributed 保持一致。使用的时候只需要将 torch.nn.parallel.DistributedDataParallel 替换为 apex.parallel.DistributedDataParallel 用于包装模型。在 API 层面,相对于 torch.distributed ,它可以自动管理一些参数(可以少传一点):
from apex.parallel import DistributedDataParallel
model = DistributedDataParallel(model)
# # torch.distributed
# model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
# model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank)
在正向传播计算 loss 时,Apex 需要使用 amp.scale_loss 包装,用于根据 loss 值自动对精度进行缩放:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
汇总一下,Apex 的并行训练部分主要与如下代码段有关:
# main.py
import torch
import argparse
import torch.distributed as dist
from apex.parallel import DistributedDataParallel
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int,
help='node rank for distributed training')
args = parser.parse_args()
dist.init_process_group(backend='nccl')
torch.cuda.set_device(args.local_rank)
train_dataset = ...
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler)
model = ...
model, optimizer = amp.initialize(model, optimizer)
model = DistributedDataParallel(model, device_ids=[args.local_rank])
optimizer = optim.SGD(model.parameters())
for epoch in range(100):
for batch_idx, (data, target) in enumerate(train_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
...
output = model(images)
loss = criterion(output, target)
optimizer.zero_grad()
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
在使用时,调用 torch.distributed.launch 启动器启动:
UDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 main.py
在 ImageNet 上的完整训练代码,请点击Github[10]。
五、Horovod 的优雅实现
Horovod 是 Uber 开源的深度学习工具,它的发展吸取了 Facebook “Training ImageNet In 1 Hour” 与百度 “Ring Allreduce” 的优点,可以无痛与 PyTorch/Tensorflow 等深度学习框架结合,实现并行训练。
在 API 层面,Horovod 和 torch.distributed 十分相似。在 mpirun 的基础上,Horovod 提供了自己封装的 horovodrun 作为启动器。
与 torch.distributed.launch 相似,我们只需要编写一份代码,horovodrun 启动器就会自动将其分配给 n 个进程,分别在 n 个 GPU 上运行。在执行过程中,启动器会将当前进程的(其实就是 GPU的)index 注入 hvd,我们可以这样获得当前进程的 index:
import horovod.torch as hvd
hvd.local_rank()
与 init_process_group 相似,Horovod 使用 init 设置GPU 之间通信使用的后端和端口:
hvd.init()
接着,使用 DistributedSampler 对数据集进行划分。如此前我们介绍的那样,它能帮助我们将每个 batch 划分成几个 partition,在当前进程中只需要获取和 rank 对应的那个 partition 进行训练:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler)
之后,使用 broadcast_parameters 包装模型参数,将模型参数从编号为 root_rank 的 GPU 复制到所有其他 GPU 中:
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
然后,使用 DistributedOptimizer 包装优化器。它能帮助我们为不同 GPU 上求得的梯度进行 all reduce(即汇总不同 GPU 计算所得的梯度,并同步计算结果)。all reduce 后不同 GPU 中模型的梯度均为 all reduce 之前各 GPU 梯度的均值:
hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters(), compression=hvd.Compression.fp16)
最后,把数据加载到当前 GPU 中。在编写代码时,我们只需要关注正常进行正向传播和反向传播:
torch.cuda.set_device(args.local_rank)
for epoch in range(100):
for batch_idx, (data, target) in enumerate(train_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
...
output = model(images)
loss = criterion(output, target)
...
optimizer.zero_grad()
loss.backward()
optimizer.step()
汇总一下,Horovod 的并行训练部分主要与如下代码段有关:
# main.py
import torch
import horovod.torch as hvd
hvd.init()
torch.cuda.set_device(hvd.local_rank())
train_dataset = ...
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler)
model = ...
model.cuda()
optimizer = optim.SGD(model.parameters())
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
for epoch in range(100):
for batch_idx, (data, target) in enumerate(train_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
...
output = model(images)
loss = criterion(output, target)
...
optimizer.zero_grad()
loss.backward()
optimizer.step()
在使用时,调用 horovodrun 启动器启动:
CUDA_VISIBLE_DEVICES=0,1,2,3 horovodrun -np 4 -H localhost:4 --verbose python main.py
在 ImageNet 上的完整训练代码,请点击Github[11]。
六、分布式 evaluation
all_reduce, barrier 等 API 是 distributed 中更为基础和底层的 API。这些 API 可以帮助我们控制进程之间的交互,控制 GPU 数据的传输。在自定义 GPU 协作逻辑,汇总 GPU 间少量的统计信息时,大有用处。熟练掌握这些 API 也可以帮助我们自己设计、优化分布式训练、测试流程。
最近,不少同学私信了我这样的问题,
- 训练样本被切分成了若干个部分,被若干个进程分别控制运行在若干个 GPU 上,如何在进程间进行通信汇总这些(GPU 上的)信息?
- 使用一张卡进行推理、测试太慢了,如何使用 Distributed 进行分布式地推理和测试,并将结果汇总在一起?
- …
要解决这些问题,我们需要一个更为基础的 API,汇总记录不同 GPU 上生成的准确率、损失函数等指标信息。这个 API 就是 torch.distributed.all_reduce
。
图2:all_reduce 示意图
如上图所示,它的工作过程包含以下三步:
- 在调用
all_reduce(tensor, op=...)
后,当前进程会向其他进程发送tensor
(例如 rank 0 会发送 rank 0 的 tensor 到 rank 1、2、3) - 同时,当前进程接受其他进程发来的
tensor
(例如 rank 0 会接收 rank 1 的 tensor、rank 2 的 tensor、rank 3 的 tensor)。 - 在全部接收完成后,当前进程(例如rank 0)会对当前进程的和接收到的
tensor
(例如 rank 0 的 tensor、rank 1 的 tensor、rank 2 的 tensor、rank 3 的 tensor)进行op
(例如求和)操作。
使用 torch.distributed.all_reduce(loss, op=torch.distributed.reduce_op.SUM)
,我们就能够对不同数据切片(不同 GPU 上的训练数据)的损失函数进行求和了。接着,我们只要再将其除以进程(GPU)数量 world_size
就可以得到损失函数的平均值。正确率也能够通过同样方法进行计算:
# 原始代码
output = model(images)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1.item(), images.size(0))
top5.update(acc5.item(), images.size(0))
# 修改后,同步各 GPU 中数据切片的统计信息,用于分布式的 evaluation
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt /= args.world_size
return rt
output = model(images)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
torch.distributed.barrier()
reduced_loss = reduce_tensor(loss.data)
reduced_acc1 = reduce_tensor(acc1)
reduced_acc5 = reduce_tensor(acc5)
losses.update(loss.item(), images.size(0))
top1.update(acc1.item(), images.size(0))
top5.update(acc5.item(), images.size(0))
值得注意的是,为了同步各进程的计算进度,我们在 reduce 之前插入了一个同步 API torch.distributed.barrier()
。在所有进程运行到这一步之前,先完成此前代码的进程会等待其他进程。这使得我们能够得到准确、有序的输出。在 Horovod 中,我们无法使用 torch.distributed.barrier()
,取而代之的是,我们可以在 allreduce 过程中指明:
def reduce_mean(tensor, world_size):
rt = tensor.clone()
hvd.allreduce(rt, name='barrier')
rt /= world_size
return rt
output = model(images)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
reduced_loss = reduce_tensor(loss.data)
reduced_acc1 = reduce_tensor(acc1)
reduced_acc5 = reduce_tensor(acc5)
losses.update(loss.item(), images.size(0))
top1.update(acc1.item(), images.size(0))
top5.update(acc5.item(), images.size(0))