积分分离PID控制算法及仿真-1

news2024/9/28 21:26:35

在普通 PID 控制中引入积分环节的目的,主要是为了消除静差,提高控制精度。但在过程的启动、结束或大幅度增减设定时,短时间内系统输出有很大的偏差,会造成PID运算的积分积累,致使控制量超过执行机构可能允许的最大动作范围对应的极限控制量,引起系统较大的超调,甚至引起系统较大的振荡。这在生产中是绝对不允许的。

积分分离控制基本思路是:当被控量与设定值偏差较大时,取消积分作用,以免由于积分作用使系统稳定性降低,超调量增大;当被控量接近给定值时,引入积分控制,以便消除静差,提高控制精度。其具体实现步骤如下:

(1)根据实际情况,人为设定阈值>0;

(2)当|error(k) |> 时,采用PD控制,可避免产生过大的超调,又使系统有较快的响应;

(3)当|error(k)|≤时,采用PID控制,以保证系统的控制精度。

积分分离控制算法可表示为:

式中,T为采样时间;为积分项的开关系数。

根据积分分离式PID控制算法得到其程序框图如图所示。

例:

设被控对象为一延迟对象:

采样时间为20s,延迟时间为4个采样时间,即80s,被控对象离散化为:

y(k)=-den(2)y(k -1)+ num(2)u(k-5)

取M=1,采用积分分离式 PID控制器进行阶跃响应,对积分分离式PID控制算法进行改进,采用分段积分分离方式,即根据误差绝对值的不同,采用不同的积分强度。仿真中指令信号为y,(k)=40,控制器输出限制在[-110,110],其阶跃式跟踪结果如图所示。取M=2,采用普通PID控制,其阶跃式跟踪结果如图所示。

仿真程序:

%Integration Separation PID Controller

clear all;

close all;

ts=20;

%Delay plant

sys=tf([1].[60,1],"inputdelay',80);

dsys=c2d(sys,ts,'zoh');

[num,den]=tfdata(dsys,'V);

u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;

y_1=0;y_2=0;y3=0;

error_1=0;error 2=0;

ei=0;

for k=1:1:200

time(k)=k*ts;

%Delay plant

y(k)=-den(2)*y_1+num(2)*u_5;

%l separation

yd(k)=40;

error(k)=yd(k)-y(k);

ei=ci+error(k)*ts;

M=2;

if M==1

%Using integration separation

if abs(error(k))>=30

beta=0.0;

clseif abs(error(k))>=20&abs(error(k))-30

beta=0.6;

elseif abs(error(k))>-10&abs(error(k))<-20

beta=0.9;

else

beta=1.0;end

elseif M==2

beta=1.0; %Not using integration separation

end

kp=0.80;

ki=0.005;

kd=3.0;

u(k)=kp*error(k)+kd*(error(k)-error_1)/ts+beta*ki*ei;

if u(k)>=110 % Restricting the output of controller

u(k)=110;

endif u(k)<=-110

u(k)=-110;

end

u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_l;u_1=u(k);

y_3=y_2;y_2=y_1;y_1=y(k);

error_2=error_l;

error_1=error(k);

end

figure(1);

plot(time,yd,'r,time,y,'k:'. linewidth',2);

xlabel('time(s)');ylabel('yd,y);

legend('Ideal position signal','Position tracking');

figure(2);

plot(time,u,'t,linewidth',2);

xlabel('time(s)');ylabel('Control input');

由仿真结果可以看出,采用积分分离方法控制效果有很大的改善。值得注意的是,为保证引入积分作用后系统的稳定性不变,在输入积分作用时比例系数k可作相应变化。此外,β值应根据具体对象及要求而定,若β过大,则达不到积分分离的目的;若β过小,则会导致无法进入积分区。如果只进行PD控制,会使控制出现余差。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/174848.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue项目基础环境搭建完整步骤

使用vue官方脚手架(vue-cli) vue-cli简介 Vue CLI 是一个基于 Vue.js 进行快速开发的完整系统&#xff0c;是一个官方脚手架&#xff0c;可以帮助我们快速创建vue项目工程目录&#xff0c;目前最新版本4.x。 Vue CLI 致力于将 Vue 生态中的工具基础标准化。它确保了各种构建…

第三天总结 之 商品管理界面的实现 之 模糊查询 与 数据在页面展示

商品管理界面的实现 模糊查询 第一步&#xff1a; 明确 查询时 需要的 条件 即sql语句中 where 后的条件 如 &#xff1a; 根据前端 可以发现 模糊查询可以通过 商品名称 日期 商品类型 来查询 所以在对应的controller层下的GoodsFuzzySelectServlet中首先要获取这三个属性的…

《深入浅出计算机组成原理》学习笔记 Day6

二进制编码1. “逢二进一”2. 字符串的表示参考1. “逢二进一” 把一个二进制数对应到十进制&#xff0c;就是把从右到左的第 N 位&#xff0c;乘上一个2 的 N 次方&#xff0c;然后加起来&#xff0c;就成了一个十进制数。从右到左的位置&#xff0c;是从 0 开始的。 例如&a…

初识C语言:IDE的选择与使用【C语言】

本文是本专栏【C语言】的第一篇文章&#xff0c;也是博主最近半年以来的更新第一篇文章&#xff0c;如果觉得有帮助&#xff0c;可以点赞支持一下&#xff01;另外本专栏最后会做一篇类似于【python爬虫】专栏最后的那篇整合的文章&#xff0c;把C语言的所有基础知识用一篇文章…

深度学习 GNN图神经网络(三)模型思想及文献分类案例实战

如果你有一定神经网络的知识基础&#xff0c;想学习GNN图神经网络&#xff0c;可以按顺序参考系列文章&#xff1a; 深度学习 GNN图神经网络&#xff08;一&#xff09;图的基本知识 深度学习 GNN图神经网络&#xff08;二&#xff09;PyTorch Geometric&#xff08;PyG&#x…

Nginx入门与应用

NginxNginx概述Nginx介绍Nginx下载和安装windowsLinuxNginx目录结构Nginx命令查看版本检查配置文件正确性启动和停止重新加载配置文件Nginx环境变量&#xff08;Linux&#xff09;Nginx配置文件结构Nginx具体应用部署静态资源反向代理负载均衡Nginx概述 Nginx介绍 Nginx是一款…

Linux系统——基础IO

要努力&#xff0c;但不要着急&#xff0c;繁花锦簇&#xff0c;硕果累累&#xff0c;都需要过程&#xff01; 目录 1.文件基础必备概念 2.文件系统调用接口 1.open && close 2.write 3.read 3.文件描述符fd 3.1什么是文件描述符 3.2文件描述符意义 3.3文件描述符的分配…

【C++】map和set的模拟实现

​&#x1f320; 作者&#xff1a;阿亮joy. &#x1f386;专栏&#xff1a;《吃透西嘎嘎》 &#x1f387; 座右铭&#xff1a;每个优秀的人都有一段沉默的时光&#xff0c;那段时光是付出了很多努力却得不到结果的日子&#xff0c;我们把它叫做扎根 目录&#x1f449;红黑树的…

一个线程如何处理多个连接?(非阻塞IO)

从BIO到NIO的转变 五种IO模型BIO的缺陷非阻塞非阻塞IO&#xff08;NIO&#xff09;非阻塞读非阻塞写非阻塞IO模型php NIO 实现适用场景什么是C10k问题&#xff1f;C10K问题的由来五种IO模型 在《UNIX 网络编程》一书中介绍了五种IO模型&#xff1a; 分别是 BIO&#xff0c;NIO…

无线电基础电路 > RLC阻尼系数计算仿真

随机搭建电路如下图所示&#xff1a; 阻尼系数的希腊字母符号“ ζ ”读作泽塔。 阻尼系数ζ (R/2) * √C/L 1000/2 * √0.00001 1.58 包括三种情况&#xff1a; ζ>1&#xff1a;过阻尼&#xff0c;频响不利落&#xff0c;需要较长时间才能消失。 ζ<1&#xff…

MinIO基本使用(实现上传、下载功能)

MinIO基本使用&#xff08;实现上传、下载功能&#xff09;1.简介2.下载和安装3.启动服务端4.创建User和Bucket4.1 创建User4.1.1 生成accessKey和secretKey4.2 创建Bucket5.在SpringBoot中使用MinIO5.1 引入依赖5.2 配置文件定义5.3 定义实体类5.4 定义业务类5.5 定义测试类5.…

vivado中block design遇到的error总结

Error1.[BD 41-1356] Address block </processing_system7_0/S_AXI_HP0/HP0_DDR_LOWOCM> is not mapped into </axi_vdma_0/Data_MM2S>. Please use Address Editor to either map or exclude it. 修改方法. a、点击Address Editor. b、在Address Editor页面右击失…

【Ajax】了解Ajax与jQuery中的Ajax

一、了解Ajax什么是AjaxAjax 的全称是 Asynchronous Javascript And XML&#xff08;异步 JavaScript 和 XML&#xff09;。通俗的理解&#xff1a;在网页中利用 XMLHttpRequest 对象和服务器进行数据交互的方式&#xff0c;就是Ajax。2. 为什么要学Ajax之前所学的技术&#xf…

使用MQTT fx测试云服务器的 mosquitto 通讯

文章目录一.MQTT.fx介绍二.MQTT.fx安装教程三.使用MQTT.fx测试云服务器的 mosquitto 通讯一.MQTT.fx介绍 MQTT.fx是一款基于Eclipse Paho&#xff0c;使用Java语言编写的MQTT客户端工具。支持通过Topic订阅和发布消息&#xff0c;用来前期和物理云平台调试非常方便。 二.MQTT…

【数据结构——顺序表的实现】

前言&#xff1a; 在之前我们已经对复杂度进行的相关了解&#xff0c;因此现在我们将直接进入数据结构的顺序表的相关知识的学习。 目录1.线性表2.顺序表2.1概念及结构2.2 接口实现2.2.1.打印顺序表2.2.2初始化顺序表2.2.3.容量的检查2.2.4.销毁顺序表2.2.5.尾插操作2.2.6.尾删…

Ubuntu下的LGT8F328P MiniEVB Arduino开发和烧录环境

基于 LGT8F328P LQFP32 的 Arduino MiniEVB, 这个板型资料较少, 记录一下开发环境和烧录过程以及当中遇到的问题. 关于 LGT8F328P 芯片参数 8位RISC内核32K字节 Flash, 2K字节 SRAM最大支持32MHz工作频率 集成32MHz RC振荡器集成32KHz RC振荡器 SWD片上调试器工作电压: 1.8V…

C语言文件操作(3)

TIPS 1. 文件是不是二进制文件&#xff0c;不是后缀说了算&#xff0c;而是内容说了算 2. 文件的随机读写 文件的随机读写也就是说我指哪打哪 fseek() 人为调整指针指向的位置 1. 根据文件指针FILE*的当前位置和你给出的偏移量来让它这个文件指针呢定位到你想要的位置上…

Flutter 这一年:2022 亮点时刻

回看 2022&#xff0c;展望 Flutter Forward 2022 年&#xff0c;我们非常兴奋的看到 Flutter 社区持续发展壮大&#xff0c;也因此让更多人体验到了令人难以置信的体验。每天有超过 1000 款使用 Flutter 的新移动应用发布到 App Store 和 Google Play&#xff0c;Web 平台和桌…

实战打靶集锦-002-SolidState

**写在前面&#xff1a;**谨以此文纪念不完美的一次打靶经历。 目录1. 锁定主机与端口2. 服务枚举3. 服务探查3.1 Apache探查3.1.1 浏览器手工探查3.1.2 目录枚举3.2 JAMES探查3.2.1 搜索公共EXP3.2.2 EXP利用3.2.2.1 构建payload3.2.2.2 netcat构建反弹shell3.2.3 探查JAMES控…

三十一、Kubernetes中Service详解、实例第一篇

1、概述 在kubernetes中&#xff0c;pod是应用程序的载体&#xff0c;我们可以通过pod的ip来访问应用程序&#xff0c;但是pod的ip地址不是固定的&#xff0c;这也就意味着不方便直接采用pod的ip对服务进行访问。 为了解决这个问题&#xff0c;kubernetes提供了Service资源&…