KaiwuDB CTO 魏可伟:1.0 时序数据库技术解读

news2024/11/17 6:38:58

大家好,首先非常感谢大家参与本次 KaiwuDB 1.0 系列产品发布会。作为国内数据库新生品牌力量,KaiwuDB 是浪潮集团控股的数据库企业,我们聚焦在工业物联网、数字能源、交通车联网、智慧产业等快速发展的重要领域,希望为各大行业客户提供完整的数据服务解决方案。

01

为什么我们关注上述提到的几大领域?

首先,当然是市场本身的的力量,物联网现有规模已经以百亿美元来衡量,同时还在不断生长;其次,从政策上看,数字能源、工业互联网都是国家重点发展的行业和领域,是未来国家经济发展的重要驱动力。分享一组基于 IDC 等权威机构综合得出的数据:

当前全球已接入的互联网设备高达 130 亿且这个数字预计 4 年后翻番;预计到 2030 年,全球 3/4 的设备都将是物联网设备。

物联网设备需要接入互联网并需要具备一定的数据采集和传输能力,预计直到 2025 年,物联网设备产生的数据会达到 79.4 ZB,同时这个数字还在以每年 60% 的速度增长,这是真正的数据爆炸。这样量级的数据给 IT 基础设施,特别是数据基础设施带来的挑战是前所未有的。

02

物联网数据不正是时序数据么?这些挑战不正是时序数据库已解决或正在解决的问题么?

答:Yes and no!

时序数据是物联网数据中占比最大的部分,所以物联网数据面临的挑战也是时序数据库要解决的问题,比如海量时序数据写入、大规模数据聚合等。值得注意的是,传统数据库的技术方式是很难应对如此大量级的数据。

好在时序数据也具备某些特点,比如它的写入基本上以追加写入为主,更新和删除操作较少;它的查询通常是以时间范围作为条件等。针对这些特性,我们可以有方向地优化引擎,这也正是为什么会出现时序数据库这一大研究方向。

时序数据的体量一般是比较庞大的,而且增速较快。大量数据会带来非常强的水平扩展需求,所以弹性伸缩是一个基本的管理需求。时序数据还具备一个独有特点:物联网设备规模非常庞大,假设把这些数据设备看成数据对象,传统数据库是无法管理的。

如果仍旧采用传统方式管理设备,势必将带来严重的性能问题。所以海量时序数据、水平扩展等这些确实是时序数据库所要解决的核心的问题。

但是,物联网应用要处理的数据又不仅仅是时序数据。比如数字能源场景下存在用电量、发电量等时序数据;另一方面也会涉及很多关系性的数据,比如在能源计价,缴费,能源交易等场景下存在的高价值关系型数据。这就意味着,需要把时序数据和关系数据进行深度融合,才能更加全面地满足客户需求。

此外大量物联网数据势必也会带来高昂的管理成本,用户会希望把数据价值最大化进而覆盖管理成本。换言之,我们数据库厂商需要用数据帮助企业判断趋势,辅助决策甚至实现自动快速响应,助力企业打造核心竞争力。

但是,很显然这些都不是今天的时序数据库的强项。所以说,物联网场景下一定是需要一款很强大的时序计算引擎,但又不止于时序数据库。

03

那针对当下现状,KaiwuDB 1.0 时序数据库具备哪些核心优势?

这里,我们对 KaiwuDB 1.0 时序数据库的技术优势做了一个总结:“快人一步”:

  • 时序数据库最大的挑战—处理海量数据,所以“”是至关重要的;

  • 产品最终是服务于“”,也就是我们的用户。一款产品好不好,最终一定是用户说了算;

  • 数据库是物联网应用的重要基础设施,但它也只是物联网应用中的一环,提供“”站式整体解决方案,才能更好地解决用户业务难点;

  • 对于物联网来说,分“”式不是一个可选项,而是一个必选项。

04

“快”可以说是 KaiwuDB 最闪亮的一点

我们一起来看看如下几组数据:KaiwuDB 可支持每秒 100 万记录入库操作;千万记录复杂查询毫秒内可完成;20 亿记录数据探索 1 秒内完成;500 万记录数据可实现 15 层下钻。上述数据都已在先前与用户的合作中得到验证。

说到这里,可能有伙伴想问:今天的市场有那么多的产品,凭什么说自己快呢?这里我就要来介绍一下 KaiwuDB 的核心专利技术—实时就地计算。

传统计算机在处理数据时,需要把数据读取到内存上再进行组织处理,磁盘上的数据其实是被组织成页的形式配置在内存中。我们需要把页 Page 还原成记录 Record 后,数据库才能进行处理。

这里就会发生多次转换,这种转换对于传统数据库来说是非常必要。但是从性能角度看,如果应用上没有大量的并发更新,比如时序数据这种模式,那这样的操作方式其实是会带来的额外开销,简单来说就是不够快!

随着硬件的发展,我们可以有内存数据库,把数据都放在内存里计算。但是当出现时序数据后,它还是会受内存限制,无法高效地处理这种需求,并且在扩展性上也有一定的问题。

上述现状也促使我们推出就地实时计算这一专利技术,我们不再沿袭传统的从磁盘到内存多种转换处理的模式,而是把磁盘和内存融为一体,把磁盘映射成内存,让计算引擎直接面对数据。换言之,我们把计算推向数据,而不是把数据移向计算

其中,我们采用的映射的方式是 Memory-mapped I/O 技术。我们把文件映射到内存地址上,和传统的 IO 方式相比,Memory-mapped I/O 在很多的场景下具有性能优势。比如传统的 IO 在读取数据时,需要把数据从系统的缓冲区复制到用户空间的缓冲区,Memory-mapped I/O 是不需要这步操作的,所以它会更快。

当然,可能也有懂 Memory-mapped I/O 技术伙伴会表示这不是一项很新的技术并且它也存在局限性,为什么 KaiwuDB 就地实时计算可以让它在时序数据上表现的这么好?原因是:我们在 Memory-mapped I/O 的基础上又进一步开展了各项优化工作:

第一点,我们抓住就地计算适合时序数据这一特点进行重点优化。时序数据写入量虽然非常大,但基本上都是追加写入 Append 操作,比较少有更新和删除的操作,也不会对已有的数据做出改动。所以,我们可以对 Memory-mapped I/O 扬长避短,通过系统调度去规避 Memory-mapped I/O 表现不好的地方。

第二点,我们优化了数据存储格式。在设计时序数据存储格式时,我们基本上把数据记录做成定场,这样不管是从写入还是查询,我们都可以非常迅速的计算并记录在文件上。这样带来的益处是:在写入时,我们可以比较好地做空间预分配,并且让不同的进程去负责不同的数据的插入。在查询时,我们可以非常快地定位到指定数据的偏移量,也能定位到我们需要的数据,大幅提升查询效率。

第三点,我们具有比较独特的数据编码技术—把变长的字段通过编码变成等长的字段。在数据记录里,我们只存等长的编码数据,原始数据存在编码的字典中。不仅保证了数据等长,可以帮助我们快速定位;而且由于使用了编码数据,众多过滤条件在编码数据时即可应用,进而在查询、条件过滤时的性能也更高。此外基于数据定长的特性,我们可以做到非常高效地并发,每个任务都可以很容易地知晓要处理的数据的起点和终点。

05

刚刚谈完了“快”,现在我们来谈谈“人”

数据库作为 IT 的基础设施具有很强的专业性,如果把软件比喻成“车”,数据库软件可以说是“F1” ,需要受过专业训练的人才可以驾驭。这也是让很多用户频繁头疼的一大问题,因为人才不好找,特别是时序数据库这样一个细分领域,存在很多自己的特性,使用门槛会更高。

所以,我们希望通过低学习成本,让用户快速上手 KaiwuDB 产品。这里我们做出的选择—融入数据库 SQL 大生态。数据库已经是一款应用了几十年的产品, SQL 的大生态中包含了很多开发者和管理者都非常熟悉操作方式。

所以,我们支持开发者运用类 SQL 的语言来完成时序数据操作,包括建表、删表、数据插入、数据查询等;兼容 PostgreSQL 数据类型和语法;支持几十种时间、数学、字符串、聚合等内置函数及自定义函数;支持命令行的工具;支持 DBeaver 等主流数据库管理工具等。

我们的宗旨:大幅度降低用户学习成本,帮助懂数据库的伙伴数天内就能上手操作 KaiwuDB 1.0

06

除兼容外,我们也尽量简化了用户的管理和维护成本

这里举两个例子:1)生命周期管理;2)智能预计算。

1、生命周期管理。众所周知时序数据具有一个特点—不同时间范围内的数据使用频率不同。最近数据往往是最常被使用到的,因此会产生时序数据的生命周期管理问题。比如最近的数据,即最热的数据,我们希望能够用最快的速度去访问它,把它缓存在内存里。针对热数据我们会将其存放在高性能存储中,与之对应的称为冷数据,它的应用频率较低,所以从成本上考虑,可以把它放在性能差一点同时也是更便宜的存储上。

在生命周期管理中,我们把数据按时间维度切开存储。把最新的数据缓存在内存里,落盘的数据则是按照用户的时间定义放在不同的文件中,新旧数据可按需放在不同的介质上。此外,我们还支持 TimeBound SQL 关键字,它定义数据的有效期,如果过期我们就会自动执行删除,从而节省用户空间。

2、智能预计算。时序数据在查询时存在另一个特点—查询是按照时间去做聚合的。为优化这部分性能,我们采取了智能预计算方式,提前把数据按照小时或天(用户可以定义范围)来做预计算。

如果发现用户所做的查询是可以利用到预计算结果时,我们就会选择相应的预计算结果来处理查询。由于预计算是提前做的,而且预计算表的结果比原始的数据会小很多,所以预计算的查询会节省很多时间。而且一次的预计算其实是可以服务很多的查询,所以预计算对整体的性能的提升是非常大的。

在 KaiwuDB 1.0 里面,预计算对用户来说是无感知的。也就是说用户侧的查询无需任何改动,我们会根据查询内容来判断是否存在对应的预计算结果,从而支持它处理查询,自动选择用原始数据或预计算结果。

07

一站式服务是一个很大的话题,因为数据服务包含的内容很丰富

数据服务包含数据摄入、数据治理、数据安全、数据目录等。所以坦诚地说,KaiwuDB 一站式目标并不是要做到如此面面俱到的一站式。

我们更多关注以 KaiwuDB 为核心,用户可能需要的相关服务。我们的目标是希望用户使用 KaiwuDB 后,可以在最短的时间内创造价值。总结下来,我们的服务主要落地在两点:一个是入口,一个是出口。

  • 入口:数据的生产者,把数据生产出来后,怎么把数据接入到 KaiwuDB 中?

  • 出口:数据消费者,当他要用 KaiwuDB 中的数据时,怎么能用得更顺手?

先说入口,这里我们提供了一项很重要的数据摄入服务。我们所要处理的物联网数据大多是异构的—他们分别从不同的设备经过不同的系统,按照不同的标准产生出来。所以,数据摄入一定要能够匹配多种不同的数据源。由于物联网采集的数据质量,通常来说是无法保证可用性的,后期会存在大量数据治理的工作。

如果能把数据验证、数据转换等数据治理工作前置,无疑可以帮助后期节省大量资源,并且能够让数据更快地被利用起来。针对此,KaiwuDB 推出了两款组件:Streamer 和 Streamer x。它们的作用是能够接入不同格式的数据,包括 CSV 文件、 JSON 文件、 MQTT 导出的数据、其他数据库导出的数据等。并且,我们还支持用户自定义 ETL 脚本,辅助用户在数据摄入过程即能完成数据验证、数据转换等治理工作。

从性能方面考虑,我们采用了 C++ 来实现 Streamer,针对特定场景做了性能优化,所以即使和市面上主流的流处理工具对比,我们的 Streamer 表现也是非常好的。此外,我们还提供了快照点恢复功能,保证数据在摄入过程中,目标端和源端的数据一致性。

接着我们来看出口端。我们根据时序数据常见场景,开放了比较容易消费的接口。对于应用开发者,特别是微服务开发者,我们提供了“数据即服务”的方式。并且,我们还有对图形化开发者工具的支持,可实现通过 API 进行开发测试。总之,我们希望数据消费可以更轻松、更便捷。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/173330.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

06技术太卷我学APEX-技术太卷我学APEX

06技术太卷我学APEX-技术太卷我学APEX 0 概述 自学APEX第7天,用APEX做了一个自学的笔记APP,名称就叫《技术太卷我学APEX》 1 登录页面 登录页面设置:就改了下名称和加上了测试账号。 登录页面效果: 这个是 APEX功能页面之一…

前端面试题合集-第一篇

前端面试题合集-第一篇 🔔每周不定时更新! ⛄️不要让自己失去竞争力! ☀️哪里都不是避风港,保持竞争力! 1. CSS选择器的优先级 !important>内联>id选择器>类选择器>标签选择器>通配符选择器>继承 在同一…

Java IO流补充 - Properties - IO流框架commons-io

文章目录IO流补充知识Properties结合IO流集合IO流框架IO流补充知识 Properties结合IO流集合 我们先来认识Properties属性集对象 Properties其实就是一个Map集合,但是我们一般不会当集合使用,因为HashMap更好用。 Properties核心作用: 属性文件&#xf…

设计模式_行为型模式 -《观察者模式》

设计模式_行为型模式 -《观察者模式》 笔记整理自 黑马程序员Java设计模式详解, 23种Java设计模式(图解框架源码分析实战) 概述 定义 观察者模式,又被称为发布-订阅(Publish / Subscribe)模式&#xff0c…

RSA与证书

这篇文章详细讲述一下RSA与证书的相关内容。内容有点多,但都是干货。 一、RSA算法 1.1简介 RSA算法是由美国三位科学家Rivest、Shamir和Adleman于1976年提出并在1978年正式发表的公开密码算 法,其命名取自三位创始人名字的首字母缩写。该算法基于数论…

CSS 计数器

CSS 计数器 CSS 计数器可让你根据内容在文档中的位置调整其显示的外观。例如,你可以使用计数器自动为网页中的标题编号,或者更改有序列表的编号。 本质上 CSS 计数器是由 CSS 维护的变量,这些变量可能根据 CSS 规则跟踪使用次数以递增或递减…

【Git】利用 GIT 做版本控制

目录 写在前面 备份方法 效果展示 写在前面 在做项目开发时,不免需要进行版本更替或者使增加新功能等,这时很重要的环节是对版本进行备份,以便在新版本开发过程中出现问题,而当工程文件过大时,在对文件备份时需要占…

Java——多线程01(创建和启动,优先级调度,守护线程,出让/礼让线程,插队/插入线程)

目录1.多线程的创建和启动方式1.线程第一种启动方式(继承Thread类)2.多线程的第二种启动方式实现Runnable接口3.多线程的第三种启动方式实现Callable接口2.Thread多线程中的方法1.getName(), setName(),currentThread(),sleep2.Thread优先级调度方法3.守…

【手把手教你学会51单片机】数码管的动态显示

注:本文章转载自《手把手教你学习51单片机》!因转载需要原文链接,故无法选择转载! 如若侵权,请联系我进行删除!上传至网络博客目的为了记录自己学习的过程的同时,同时能够帮助其他一同学习的小伙…

类的初始化2023018

类的初始化: 第一次使用某个类,例如Person类,系统通常会在第一次使用Person类时加载这个类并初始化这个类。在类的准备阶段,系统将会为该类的类变量分配内存空间,并指定默认初始值。当Person类初始化完成后&#xff0c…

高并发系统设计-Feed流系统设计

有两种实现方式:push和pull实现,首先讨论push模式 概念 我们在讲如何设计Feed流系统之前,先来看一下Feed流中的一些概念: Feed:Feed流中的每一条状态或者消息都是Feed,比如朋友圈中的一个状态就是一个Fe…

布隆过滤器算法

目录布隆过滤器主要有下面的参数:结论举例布隆过滤器主要有下面的参数: 1.假设数据量为n,预期的失误率为p(布隆过滤器大小和每个样本的大小无关)。 2.根据n和p,算出BloomFilter一共需要多少个bit位&#x…

【年度总结 | 2022】想干什么就去干吧,少年

🤵‍♂️ 个人主页: 计算机魔术师 👨‍💻 作者简介:CSDN内容合伙人,全栈领域优质创作者。 程序人生专栏 | 年度总结 ( 2022 ) 作者: 计算机魔术师 版本: 1.0 &#xff08…

关于性能测试需要知道的

随着各企业的业务发展、用户量以及数据量的不断增加,系统承载的压力也会随之增加,服务系统的性能好坏又严重影响企业的利益。因此,性能测试重要性与需求越来越强烈。 常见的性能测试目的 性能测试是确定系统在特定工作负载下的稳定性和响应…

JAVA 基础语法——(HelloWorld案例编写,Notepad软件的安装和使用,注释,关键字,常量,变量,计算机存储单元,数据类型,标识符,类型转换)

目录 HelloWorld案例的编写 Notepad软件的安装和使用 注释 关键字 常量 变量 计算机存储单元 数据类型概述 标识符 类型转换 HelloWorld案例的编写 首先定义一个类——–public class 类名在类定义后加上一对大括号 {}在大括号中间添加一个主(main)方法/函数——–publi…

详解Curl各参数的含义

详解Curl各参数的含义1. Introduction2. Detail2.1 参数-k2.2 参数-X2.3 参数-x2.4 参数-w %{http_code}2.5 参数-d2.6 参数-H2.7 参数-F2.8 参数-O2.9 参数-o2.10 参数-u2.11 参数-b2.12 参数-G3. Awakening1. Introduction [rootnolan ~]# curl -h Usage: curl [options...]…

如何快速部署一款小程序

小程序现在大家都不陌生,微信,qq,抖音,支付宝等等都有小程序,今天给的大家带有通用的小程序,如何快速部署两种方式:自己纯手工开发,或者找别人开发不管哪种方式,今天我带…

【数据结构与算法】选择排序

文章目录选择排序什么是选择排序?选择排序实例分析算法分析代码部分选择排序 什么是选择排序? 选择排序是一种简单直观的排序算法。 它的工作原理是:每一轮从待排序列中选取一个值最小的元素,将它和当前序列的第一个元素互换。 可…

【GD32F427开发板试用】4. ADC采集摇杆模块移动量

本篇文章来自极术社区与兆易创新组织的GD32F427开发板评测活动,更多开发板试用活动请关注极术社区网站。作者:hehung 之前发帖 【GD32F427开发板试用】1. 串口实现scanf输入控制LED 【GD32F427开发板试用】2. RT-Thread标准版移植 【GD32F427开发板试用…

vue利用provide和inject做套娃组件设计

provide和inject原来用的不多,只是见人引用axios的时候在main.js里使用provide来注入 app.provide(axios, axios) 这样,在所有的vue文件里都可以使用inject来获取这个注入的axios const axios inject("axios"); 这种利用provide和inject做…