RTMW:实时多人2D和3D 全人体姿态估计

news2024/12/27 13:23:57

在这里插入图片描述
单位:上海AI实验室
代码:mmpose/tree/main/projects/rtmpose

系列文章目录

RTMO: 面向高性能单阶段的实时多人姿态估计


在这里插入图片描述

在这里插入图片描述

目录

  • 系列文章目录
  • 摘要
  • 一、背景
  • 二、相关工作
    • 2.1 自上而下的方法。
    • 2.2 坐标分类。
    • 2.3 3D Pose
  • 3 实验方法
    • 3.1.1 任务限制
    • 3.1.3训练技术


摘要

全身姿势估计是一项具有挑战性的任务,它需要同时预测身体、手、脸和脚的关键点。全身姿态估计旨在预测人体的细粒度姿态信息,包括面部、躯干、手和脚,这在以人为中心的感知和生成的研究以及各种应用中发挥着重要作用。
在这项工作中,我们提出了RTMW(实时多人全身姿态估计模型),一系列高性能的二维/三维全身姿态估计模型。我们将RTMPose模型架构与FPN和HEM(层次编码模块)相结合,以更好地捕获从不同尺度的不同身体部位的姿态信息。该模型使用丰富的开源人类关键点数据集进行训练,并使用手动对齐的注释,并通过两阶段蒸馏策略进一步增强。 RTMW在多个全身姿态估计基准上表现出了良好的性能,同时保持了高推理效率和部署友好性。


一、背景

全身姿态估计是推进以人为中心的人工智能系统能力的重要组成部分。它可用于人机交互、虚拟角色动画和电影产业。尝试在AIGC(AI生成的内容)应用程序中,全身姿态估计的结果也被用来控制角色的生成。

随着全身姿态估计支持的下游任务和工业应用的出现,设计一个高精度、低延迟、易于部署的模型是非常有价值的。在早期的人体姿态估计研究中,由于任务的复杂性和计算能力和数据的限制,研究人员将人体分成不同的部分进行独立的姿态估计研究。在前辈们的不懈努力下,在这些单独的、部分特定的二维姿态估计任务中取得了显著的成果。

之前的工作,如OpenPose [3],可以通过结合这些单独部分的结果来获得全身姿态估计结果。然而,这种简单的组合方法面临着很高的计算成本和显著的性能限制。虽然像MediaPipe [22]这样的轻量级工具提供了高实时性能和易于部署,但它们的准确性并不完全令人满意。我们的MMPose [5]团队去年发布了RTMPose [10]模型,它在准确性和实时性能之间取得了极好的平衡。随后,在此基础上,DWPose [40]通过集成一个两阶段蒸馏技术和集成一个新的数据集UBody [17],进一步提高了RTMPose在全身姿态估计任务中的性能。

RTMPose [10]的结构设计最初只考虑了身体姿势。然而,在全身姿态估计任务中,特征分辨率对面部、手和脚姿态估计的准确性至关重要。因此,我们引入了PAFPN(部分聚合特征金字塔网络)和HEM(高效多尺度特征融合)两种技术来提高特征分辨率。实验结果证实,这两个模块显著提高了细粒度体部位的定位精度。

与此同时,开源的全体姿态估计数据集的稀缺极大地限制了开源模型。为了充分利用聚焦于不同身体部位的数据集,我们手动对齐了14个开源数据集的关键点定义(3个全身关键点,6个身体关键点,4个面部关键点,1个手部关键点),这些数据集共同用于训练RTMW。在三维全身姿势估计领域,学术界主要采用了两种主要的方法:提升[26,29,42]方法和回归[28,32]方法。对基于SimCC [16]技术的方法的学术研究明显缺乏。我们的研究努力通过将RTMW架构应用到三维全身姿态估计任务中,冒险进入了未知的领域。我们的实验结果表明,SimCC [16]方法有自己的特性,并且在这一领域具有值得称赞的性能。

二、相关工作

2.1 自上而下的方法。

自顶向下的算法使用现成的探测器来提供边界盒,并将人体裁剪到一个统一的尺度,以进行姿态估计。自上而下范式的算法[2,18,31,37,39]已经主导了公共基准测试。两阶段推理范式允许人类检测器和姿态估计器使用相对较小的输入分辨率,允许它们在非极端场景下(即当图像中的人数不超过6人时),在速度和精度上优于自底而上的算法。此外,以前的大多数工作都集中在在公共数据集上实现最先进的性能。相比之下,我们的工作旨在设计具有更好的速度-精度权衡的模型,以满足工业应用的需求。

2.2 坐标分类。

以前的姿态估计方法通常将关键点定位视为坐标回归(如[14,25,33])或热图回归(如[8,37,39,41])。SimCC [16]引入了一种新的方案,将关键点预测分别从水平坐标和垂直坐标的亚像素箱中进行分类,这带来了几个优点。

首先,SimCC摆脱了对高分辨率热图的依赖,因此允许一个非常紧凑的架构,既不需要高分辨率的中间表示[31],也不需要昂贵的升级层[37]。其次,SimCC将最终的特征图扁平化以进行分类,而不是涉及全局池化[33],从而避免了空间信息的丢失。第三,通过在亚像素尺度上的坐标分类,可以有效地缓解量化误差,而不需要额外的细化后处理[41]。

这些特性使得SimCC在构建轻量级姿态估计模型方面具有吸引力。RTMO [21]将坐标分类方法引入到单阶段姿态估计中,取得了显著的性能提高,也证实了SimCC方法在姿态估计任务中的巨大潜力。在这项工作中,我们进一步利用坐标分类方案,优化模型架构和训练策略。

2.3 3D Pose

三维姿态估计是一个活跃的研究领域,具有广泛的工业应用。当代方法的景观主要由两种主要方法所主导:利用二维关键点的提升方法[26,29,42]和基于图像分析的回归方法。提升方法将二维坐标输入神经网络,直接预测其空间坐标,其计算速度快。然而,这种效率是以牺牲场景信息为代价的,因为这些算法缺乏图像输入,导致它们依赖于对训练数据的注释来确定其预测结果的范围。

相反,基于图像的回归方法[28,32]在结合丰富的视觉数据的同时,面临着推理速度缓慢和任务复杂性增加的挑战。这些因素导致了难以训练模型和实现高精度。我们提出的方法RTMW3D与传统方法不同,它采用了基于Simcc技术[16]的分类策略,通过后处理来细化最终的空间坐标。我们的实验结果强调了这种创新方法的有效性。

3 实验方法

虽然我们之前提出的RTMPose并没有针对全身关键点估计任务的特殊设计,但经过实验,我们发现它的性能可以与目前最先进的方法ZoomNas [38]相媲美。然而,在实验过程中,我们发现RTMPose在全身姿态估计任务中存在一定的性能瓶颈。随着参数规模的增加,模型的性能并不随着参数数量的增加而提高。另一方面,与其他研究团队的研究,如DWPose团队,虽然他们添加了新的数据集在训练RTMPose和采用更有效的两阶段蒸馏训练技术,有效地提高了RTMPose的准确性,他们仍然不能避免问题的固有性能瓶颈RTMPose参数数量的增加。

3.1.1 任务限制

我们首先分析了全身姿态估计任务中一些未解决的问题。RTMW旨在解决这些挑战。
第一个问题是局部区域的解决限制。 在图像中,人体的某些部分,如脸、手和脚,只占人体和图像的很小的比例。对于一个模型,这些区域的输入分辨率将直接影响模型对这些部分中的关键点的预测精度。
第二个问题是,从人体不同部位学习关键点的难度是不同的。例如,面部上的关键点可以看作是附着在面部上的一些关键点,一个刚体,由于面部的变形很小,模型会发现更容易学习预测这些面部关键点。相反,由于手指和手腕的旋转和运动,手的关键点具有更高的自由度,使它们更难以预测。
第三个问题在于损失函数。常用的损失函数,如KL散度和回归误差,都是逐点计算的。因此,它们往往是由具有更多关键点和更大的空间比例的身体部位所主导的,如躯干和面部,而不太关注小而复杂的部位,如手和脚。这通常导致了不平衡收敛,这意味着模型对较低的平均误差较低,但在复杂的身体部位表现出较差的准确性。最后一点是,开源的全身姿态估计数据集很少,这极大地限制了我们对该模型能力的研究。针对上述限制,我们为RTMPose设计了一套目标优化解决方案,并提出了我们的RTMW模型。

3.1.3训练技术

由于缺乏开源的全身姿态估计数据集,我们手动对齐了14个开源数据集,其中包括全身、躯干、手和面部的姿态估计关键点。我们使用这14个数据集进行联合训练。同时,为了使模型的性能最大化,我们采用了DWPose在模型训练过程中使用的两阶段蒸馏技术来进一步提高模型的性能。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2266413.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AI智能养站神器-SEO助理原创文章批量生成发布工具

很多站长最头疼的就是网站每天的内容更新,因为不知道写什么,采集被人的文章又会被定义为抄袭,而且现在伪原创已经没有多大的效果了,所以今天给大家分享的就是一款AI智能养战神器-SEO助理原创文章批量生成发布工具。 这款工具支持…

用Python开启人工智能之旅(三)常用的机器学习算法与实现

第三部分:常用的机器学习算法与实现 用Python开启人工智能之旅(一)Python简介与安装 用Python开启人工智能之旅(二)Python基础 用Python开启人工智能之旅(三)常用的机器学习算法与实现 用Pyt…

FD(File Descriptor)泄漏

File Descriptor是Linux下概念,fd 是 int类型非负数! 进程打开File,Socket,Pipe后生成一个File Descriptor,它是打开这个系统资源的标识符。 Linux每个进程fd最大1024个,超过之后进程 crash,c…

英语单词拼读小程序开发制作介绍

英语单词拼读小程序开发制作介绍本英语单词拼读小程序系统开发的主要功能有: 1、按年级分类展示每个年级阶段的英语单词信息。 2、点击选择的单词进入单词拼读页面,展示英语单词的拼读音标、中文意思、单词发音、拆分词汇发音、用户通过朗读发音对比。通…

TCP客户端模拟链接websocket服务端发送消息(二)

兄弟们,我来填坑了,o(╥﹏╥)o o(╥﹏╥)o o(╥﹏╥)o o(╥﹏╥)o o(╥﹏╥)o o(╥﹏╥)o,前几天写了个tcp模拟websocket客户端的以为完成,后面需要发送消息给服务端,以为简单不就是一个发送消息么,这不是一…

Docker 镜像加速访问方案

在数字化时代,Docker以其轻量级和便捷性成为开发者和运维人员的首选容器技术。然而自2023年5月中旬起,Docker Hub 的访问速度较慢或不稳定,这对依赖Docker Hub拉取镜像的用户来说无疑是一个挑战。本文将提供 Docker Hub 访问的一系列替代方案…

牛客网刷题 ——C语言初阶——BC112小乐乐求和

1.牛客网刷题 ——C语言初阶 牛客网:BC112小乐乐求和 小乐乐最近接触了求和符号Σ,他想计算的结果。但是小乐乐很笨,请你帮助他解答。 输入描述: 输入一个正整数n (1 ≤ n ≤ 109) 输出描述: 输出一个值,为求和结果。 示例1 输…

Eclipse常用快捷键详解

文章目录 Eclipse常用快捷键详解一、引言二、编辑快捷键三、选择和移动快捷键四、行操作快捷键五、搜索和导航快捷键六、调试快捷键七、重构快捷键八、其他快捷键九、使用案例场景一:代码编写代码示例 场景二:代码调试场景三:代码重构代码示例…

clickhouse测试报告

​一、背景 针对当前实施的项目,面临着两个主要挑战:一是需要存储更详细的原始数据和中间数据,二是现有基于MySQL的数据存储解决方案在数据量增长时性能受限,特别是在进行跨年历史数据的即时分析时。为了解决这些问题&#xf…

windows和mac共享文件夹访问教程

mac共享文件夹,windows访问: mac上开启文件夹共享,并添加文件夹和用户,然后windows 上 在windows上快捷键 win r 打开运行,按如下格式输入mac设备的IP地址: 就可以访问了: windows共享文件夹…

FPGA自学之路:到底有多崎岖?

FPGA,即现场可编程门阵列,被誉为硬件世界的“瑞士军刀”,其灵活性和可编程性让无数开发者为之倾倒。但谈及FPGA的学习难度,不少人望而却步。那么,FPGA自学之路到底有多崎岖呢? 几座大山那么高?…

两分钟掌握 TDengine 全部写入方式

1. 背景 TDengine 写入过程会涉及很多概念,这些概念目前你是不是还一团乱,参数绑定写入、无模式写入、websocket 写入、RESTFUL 写入 、各种连接器写入等等一堆的写入,都是做什么的,不明白,这里花两分钟时间给你彻底整…

GJB289A总线典型网络理论分析

1.GJB289A总线典型网络理论分析 根据相关标准,“某个支路的故障不影响整个系统”及耦合变压器特性,本文在仿真与实测时均采用典型的一发一收两端口总线网络。 典型两端口总线网络电气结构如图1所示,包含终端匹配电阻、故障隔离电阻、耦合变…

BLE core 内容整理解释

本文内容比较杂散,只是做记录使用,后续会整理的有条理些 link layer 基本介绍 **Link Layer Control(链路层控制)**是蓝牙低功耗(BLE)协议栈的核心部分,负责实现设备间可靠、安全、低功耗的数…

DP动态规划+贪心题目汇总

文章目录 背包01背包416. 分割等和子集 完全背包279. 完全平方数322. 零钱兑换 两个字符串DPLCR 095. 最长公共子序列139. 单词拆分 单个数组字符串DP5. 最长回文子串300. 最长递增子序列53.最大子数组和152. 乘积最大子数组198. 打家劫舍 三角形120. 三角形最小路径和 贪心121…

传统网络架构与SDN架构对比

传统网络采用分布式控制,每台设备独立控制且管理耗时耗力,扩展困难,按 OSI 模型分层,成本高、业务部署慢、安全性欠佳且开放性不足。而 SDN 架构将控制平面集中到控制器,数据转发由交换机负责,可统一管理提…

CI/CD是什么?

CI/CD 定义 CI/CD 代表持续集成和持续部署(或持续交付)。它是一套实践和工具,旨在通过自动化构建、测试和部署来改进软件开发流程,使您能够更快、更可靠地交付代码更改。 持续集成 (CI):在共享存储库中自动构建、测试…

Vue中动态样式绑定+CSS变量实现切换明暗主题功能——从入门到进阶

1.直接借助Vue的动态绑定样式绑定 Vue动态样式绑定 在Vue中,动态样式绑定是一种强大的功能,它允许开发者根据数据的变化动态地更新元素的样式。以下是对Vue动态样式绑定的详细知识梳理与详解: 一、基础知识 Vue的动态样式绑定主要通过v-b…

科汛网校KesionEDU CheckOrder SQL注入漏洞复现

0x01 产品简介 科汛网校KesionEDU是KESION科汛开发的在线教育建站系统,支持在线直播教学、课程点播、录播授课等多种教学方式,满足不同场景下的教学需求。提供问答互动、学习点评、在线笔记等功能,增强学员与教师之间的互动交流。拥有在线考试系统,支持单选、多选、问答等…

Windows Subsystem for Linux——设置默认登录用户名

大纲 问题解法 问题 在《Windows Subsystem for Linux——安装多个相同的操作系统》一文中,我们实现了子系统的导出和导入,但是也带来了一个问题:登录到系统时,会使用root用户。在一些场景下,这并不符合我们的使用场景…