Android下HWC以及drm_hwcomposer普法((上)
引言
按摩得全套,错了,做事情得全套,普法分析也是如此。drm_hwcomposer如果对Android图形栈有一定研究的童鞋们应该知道它是Android提供的一个的图形后端合成处理HAL模块的实现。但是在分析这个之前我们非常有必要了解一下Android的HWC前世今生,然后再来看drm_hwcomposer是如何配合HWC框架的
一.普法HWC
这里我们对HWC的普法主要从如下接方面展开进行:
- HWC的概述
- HWC的进化
- HWC中重要概念和实现逻辑
1.1 HWC概述
我们知道SurfaceFlinger可以使用OpenGLES合成Layer,但是这需要占用并消耗大量的GPU资源。大多数GPU都没有针对图层合成进行优化,当SurfaceFlinger通过GPU合成图层时,应用程序无法使用GPU进行自己的渲染。为了解放GPU的绘制能力,很多芯片厂家会提供硬件叠加合成,如果硬件叠加器支持的场景都可以走硬件叠加,解放GPU的绘制能力专心绘制,提升的渲染性能同时还能大幅度的降低功耗(GPU强绘制,叠加搬移并不擅长,高功耗)这个时候我们的HWC就登场了,HWC(hwcomposer)是Android中进行窗口(Layer)合成和显示的HAL层模块,其实现是特定于设备的,而且通常由显示设备制造商(OEM)完成,为SurfaceFlinger服务提供硬件支持。而HWC通过硬件设备进行图层合成,可以减轻GPU的合成压力。应用把要显示的layers交给SurfaceFlinger,SurfaceFlinger直接把这些layers交给hwc,hwc就可以在自己能力范围内做好合成,再把合成好的结果拿去显示。如果芯片显示硬件模块功能较弱,不支持某些合成场景,就会用CPU(纯软件合成)或者GPU去做。
显示设备的能力千差万别,很难直接用API表示硬件设备支持合成的Layer数量,Layer是否可以进行旋转和混合模式操作,以及对图层定位和硬件合成的限制等。因此HWC描述上述信息的流程是这样的:
-
SurfaceFlinger向HWC提供所有Layer的完整列表,让HWC根据其硬件能力,决定如何处理这些Layer。
-
HWC会为每个Layer标注合成方式,是通过GPU还是通过HWC合成。
-
SurfaceFlinger负责先把所有注明GPU合成的Layer合成到一个输出Buffer,然后把这个输出Buffer和其他Layer(注明HWC合成的Layer)一起交给HWC,让HWC完成剩余Layer的合成和显示。
虽然每个显示设备的能力不同,但是官方要求每个HWC硬件模块都应该支持以下能力: -
至少支持4个叠加层:状态栏、系统栏、应用本身和壁纸或者背景。
-
叠加层可以大于显示屏,例如:壁纸
-
同时支持预乘每像素(per-pixel)Alpha混合和每平面(per-plane)Alpha混合。
-
为了支持受保护的内容,必须提供受保护视频播放的硬件路径。
RGBA packing order, YUV formats, and tiling, swizzling, and stride properties
虽然上述官网要求如此,但是,但是很多hwc是没有达到上述要求的,有的叠加只支持一层的primary plane,也不支持各种混合,各种特性,毕竟建议还是建议。
Tiling:可以把Image切割成MxN个小块,最后渲染时,再将这些小块拼接起来,就像铺瓷砖一样。
Swizzling:一种拌和技术,表示向量单元可以被任意地重排或重复。 但是并非所有情况下HWC都比GPU更高效,例如:当屏幕上没有任何变化时,尤其是叠加层有透明像素并且需要进行图层透明像素混合时。在这种情况下,HWC可以要求部分或者全部叠加层都进行GPU合成,然后HWC持有合成的结果Buffer,如果SurfaceFlinger要求合成相同的叠加图层列表,HWC可以直接显示之前合成的结果Buffer,这有助于提高待机设备的电池寿命。
HWC也提供了VSync事件,用于管理渲染和图层合成时机。
1.2 HWC的进化
Android的HWC模块经历了HWC和HWC2两个版本,现在高版本默认使用HWC2,然后其加载方式也由原来的的SurfaceFlinger直接通过loader加载HAL模块,变成现在的通过HIDL调用到composer service单独加载HAL模块实现。活是越来越整得复杂了。
无论通过和中方式加载HAL的实现,我们需要知道的一点就是HAL加载的流程是,先加载hwcomposer模块得到hw_module_t,再打开composer设备得到hw_device_t。hw_module_t和hw_device_t定义在hardware/libhardware/include/hardware/hardware.h,表示一个HAL层模块和属于该模块的一个实现设备。注意这里是先有HAL模块,再有实现此模块的硬件设备。
struct hw_module_t;
struct hw_module_methods_t;
struct hw_device_t;
typedef struct hw_module_t {
uint32_t tag;
uint16_t module_api_version;
#define version_major module_api_version
#define version_minor hal_api_version
/** Identifier of module */
const char *id;
/** Name of this module */
const char *name;
/** Author/owner/implementor of the module */
const char *author;
/** Modules methods */
struct hw_module_methods_t* methods;
/** module's dso */
void* dso;
#ifdef __LP64__
uint64_t reserved[32-7];
#else
/** padding to 128 bytes, reserved for future use */
uint32_t reserved[32-7];
#endif
} hw_module_t;
typedef struct hw_module_methods_t {
/** Open a specific device */
int (*open)(const struct hw_module_t* module, const char* id,
struct hw_device_t** device);
} hw_module_methods_t;
typedef struct hw_device_t {
/** tag must be initialized to HARDWARE_DEVICE_TAG */
uint32_t tag;
uint32_t version;
/** reference to the module this device belongs to */
struct hw_module_t* module;
/** padding reserved for future use */
#ifdef __LP64__
uint64_t reserved[12];
#else
uint32_t reserved[12];
#endif
/** Close this device */
int (*close)(struct hw_device_t* device);
} hw_device_t;
#ifdef __cplusplus
#define TO_HW_DEVICE_T_OPEN(x) reinterpret_cast<struct hw_device_t**>(x)
#else
#define TO_HW_DEVICE_T_OPEN(x) (struct hw_device_t**)(x)
#endif
/**
* Name of the hal_module_info
*/
#define HAL_MODULE_INFO_SYM HMI
/**
* Name of the hal_module_info as a string
*/
#define HAL_MODULE_INFO_SYM_AS_STR "HMI"
int hw_get_module(const char *id, const struct hw_module_t **module);
int hw_get_module_by_class(const char *class_id, const char *inst,
const struct hw_module_t **module);
__END_DECLS
#endif /* ANDROID_INCLUDE_HARDWARE_HARDWARE_H */
我们是基于HWC2协议实现,则需要实现hwcomposer2.h中定义的hwc2_device_t接口,而我们后续要分析的drm_hwcomposer就是基于HWC2的实现。每个HAL层模块实现都要定义一个HAL_MODULE_INFO_SYM数据结构,并且该结构的第一个字段必须是hw_module_t。这里关于它们之间的对应关系,和一些数据结构这里暂时不分析,太多了,这里我们不做过多分析。
1.3 HWC中重要的概念和核心调用逻辑
这里我们的重点不是SurfaceFlinger里面HWC相关的代码部分分析,但是该有的概念和一些核心调用逻辑还是必须提前知道:
但是我们如下的几个重要的概念我们必须要有:
- HWC2::Device:表示硬件合成显示设备
- HWC2::Display:表示一个显示屏幕,可以是物理显示屏(可以热插拔接入或者移除),也可以是虚拟显示屏,现在的游戏录屏一般都是基于虚拟屏幕实现的。
- HWC2::Layer:表示一个叠加图层,对应与应用侧的Surface。
在进行接下来的分析前,我们先来一个Layer的合成方式是怎么确定的那?大致流程如下所示!
其基本流程可以归纳总结为如下:
- 当VSync信号到来时,SurfaceFlinger被唤醒,处理Layer的新建,销毁和更新,并且为相应Layer设置期望的合成方式。
- 所有Layer更新后,SurfaceFlinger调用validateDisplay,让HWC决定每个Layer的合成方式。
- SurfaceFlinger调用getChangedCompositionTypes检查HWC是否对任何Layer的合成方式做出了改变,若是,那么SurfaceFlinger则调整对应Layer的合成方式,并且调用acceptDisplayChanges通知HWC。
- SurfaceFlinger把所有Client类型的Layer合成到Target图形缓冲区,然后调用setClientTarget把Target Buffer设置给HWC。(如果没有Client类型的Layer,则可以跳过该方法)
- 最后,SurfaceFlinger调用presentDisplay,让HWC完成剩余Layer的合成,并且在显示屏上展示出最终的合成结果。
- HWC2::Layer的创建流程
SurfaceFlinger::onMessageReceived
onMessageRefresh()//Android 13上面是通过andler::handleMessage compositor.composite
mCompositionEngine->present(refreshArgs)
output->prepare(args, latchedLayers)
Output::rebuildLayerStacks
Output::collectVisibleLayers
Output::ensureOutputLayerIfVisible
BaseOutput::createOutputLayer(layerFE)
Display::createOutputLayer
hwc.createLayer
mComposer.createLayer
HwcDisplay::CreateLayer//drm_hwcomposer
05-26 01:57:17.427 2264 2264 D createOutputLayer: #00 pc 000000000013f994 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Display::createOutputLayer(android::sp<android::compositionengine::LayerFE> const&) const+84)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #01 pc 0000000000140dfc /system/lib64/libsurfaceflinger.so (std::__1::shared_ptr<android::compositionengine::impl::Display> android::compositionengine::impl::createOutputTemplated<android::compositionengine::impl::Display, android::compositionengine::CompositionEngine>(android::compositionengine::CompositionEngine const&)::Output::ensureOutputLayer(std::__1::optional<unsigned long>, android::sp<android::compositionengine::LayerFE> const&)+80)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #02 pc 00000000001475e0 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Output::ensureOutputLayerIfVisible(android::sp<android::compositionengine::LayerFE>&, android::compositionengine::Output::CoverageState&)+1692)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #03 pc 0000000000146e60 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Output::collectVisibleLayers(android::compositionengine::CompositionRefreshArgs const&, android::compositionengine::Output::CoverageState&)+128)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #04 pc 0000000000146d38 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Output::rebuildLayerStacks(android::compositionengine::CompositionRefreshArgs const&, std::__1::unordered_set<android::sp<android::compositionengine::LayerFE>, android::compositionengine::LayerFESpHash, std::__1::equal_to<android::sp<android::compositionengine::LayerFE> >, std::__1::allocator<android::sp<android::compositionengine::LayerFE> > >&)+340)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #05 pc 0000000000146a3c /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Output::prepare(android::compositionengine::CompositionRefreshArgs const&, std::__1::unordered_set<android::sp<android::compositionengine::LayerFE>, android::compositionengine::LayerFESpHash, std::__1::equal_to<android::sp<android::compositionengine::LayerFE> >, std::__1::allocator<android::sp<android::compositionengine::LayerFE> > >&)+56)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #06 pc 000000000013eb3c /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::CompositionEngine::present(android::compositionengine::CompositionRefreshArgs&)+116)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #07 pc 0000000000111c08 /system/lib64/libsurfaceflinger.so (android::SurfaceFlinger::onMessageRefresh()+1524)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #08 pc 000000000010ee5c /system/lib64/libsurfaceflinger.so (android::SurfaceFlinger::onMessageReceived(int, long)+88)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #09 pc 0000000000019b8c /system/lib64/libutils.so (android::Looper::pollInner(int)+372)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #10 pc 00000000000199b0 /system/lib64/libutils.so (android::Looper::pollOnce(int, int*, int*, void**)+112)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #11 pc 00000000000f7850 /system/lib64/libsurfaceflinger.so (android::impl::MessageQueue::waitMessage()+84)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #12 pc 0000000000108594 /system/lib64/libsurfaceflinger.so (android::SurfaceFlinger::run()+20)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #13 pc 0000000000002394 /system/bin/surfaceflinger (main+844)
05-26 01:57:17.428 2264 2264 D createOutputLayer: #14 pc 000000000008506c /apex/com.android.runtime/lib64/bionic/libc.so (__libc_init+108)
- HWC2::Layer设置buffer的流程
//通过Composer::setLayerBuffer调用堆栈,将buffer\_handle\_t信息传递到hwc2的HAL层实现的
onMessageRefresh()
mCompositionEngine->present(refreshArgs)
output->present(args) //Output.cpp
Output::updateAndWriteCompositionState(refreshArgs)
layer->writeStateToHWC
writeOutputIndependentPerFrameStateToHWC
OutputLayer.cpp:471 writeBufferStateToHWC
HwcLayer::SetLayerBuffer //drm_hwcomposer
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #00 pc 00000000000b4028 /system/lib64/libsurfaceflinger.so (android::Hwc2::impl::Composer::setLayerBuffer(unsigned long, unsigned long, unsigned int, android::sp<android::GraphicBuffer> const&, int)+96)
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #01 pc 00000000001514c8 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::OutputLayer::writeBufferStateToHWC(android::HWC2::Layer*, android::compositionengine::LayerFECompositionState const&)+344)
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #02 pc 0000000000150e74 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::OutputLayer::writeOutputIndependentPerFrameStateToHWC(android::HWC2::Layer*, android::compositionengine::LayerFECompositionState const&)+484) OutputLayer.cpp:471 writeBufferStateToHWC
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #03 pc 00000000001500ac /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::OutputLayer::writeStateToHWC(bool)+180) OutputLayer.cpp:342 writeOutputIndependentPerFrameStateToHWC
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #04 pc 00000000001479a4 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Output::updateAndWriteCompositionState(android::compositionengine::CompositionRefreshArgs const&)+356) Output.cpp:607 layer->writeStateToHWC
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #05 pc 0000000000146b2c /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::Output::present(android::compositionengine::CompositionRefreshArgs const&)+64) Output.cpp:313 updateAndWriteCompositionState(refreshArgs)
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #06 pc 000000000013ebe8 /system/lib64/libsurfaceflinger.so (android::compositionengine::impl::CompositionEngine::present(android::compositionengine::CompositionRefreshArgs&)+220) CompositionEngine.cpp output->present(args)
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #07 pc 0000000000111c4c /system/lib64/libsurfaceflinger.so (android::SurfaceFlinger::onMessageRefresh()+1524) mCompositionEngine->present(refreshArgs);
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #08 pc 000000000010eea0 /system/lib64/libsurfaceflinger.so (android::SurfaceFlinger::onMessageReceived(int, long)+88) onMessageRefresh()
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #09 pc 0000000000019b8c /system/lib64/libutils.so (android::Looper::pollInner(int)+372)
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #10 pc 00000000000199b0 /system/lib64/libutils.so (android::Looper::pollOnce(int, int*, int*, void**)+112)
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #11 pc 00000000000f7894 /system/lib64/libsurfaceflinger.so (android::impl::MessageQueue::waitMessage()+84)
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #12 pc 00000000001085d8 /system/lib64/libsurfaceflinger.so (android::SurfaceFlinger::run()+20)
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #13 pc 0000000000002394 /system/bin/surfaceflinger (main+844)
05-26 01:57:51.122 2280 2280 D setLayerBuffer: #14 pc 000000000008506c /apex/com.android.runtime/lib64/bionic/libc.so (__libc_init+108)
二. drm_hwcomposer普法
drm_hwcomposer作为HWC框架的HAL实现,它是怎么承接HWC的接口,并且实现相关逻辑的呢。这就离不开它的设计逻辑了,分为frontend前端和backend后端处理逻辑。
- frontend 是对外提供调用的接口,,外部使用者呼叫 front end 暴漏出的接口来呼叫某一功能;
- backend 主要是调用内核的实现逻辑,是前端接口功能的内部实现,是真正做事的地方
其中最最重要的就是后端的设计逻辑,分为三种情况
- Backend: 一个后端的实现,注册为"generic",主要是定义了ValidateDisplay方法,这个方法用来设置可见的HwcLayer应该采用什么合成方式
- BackendClient: 一个后端的实现,注册为"client",主要是定义了ValidateDisplay方法,它把所有HwcLayer都设置成立Client合成方式
- BackendManager:后端的管理器,用来根据Device name从已注册的backend列表中选择一个,设置给HwcDisplay;GetBackendByName就是通过Device name来从available_backends_中选择一个匹配的Backend构造函数来构建后端对象。
接下来我们就从代码触发,看看它是如何使用上述的框架实现的!
2.1 drm_hwcomposer源码初探
这块我们只分析其核心实现,对于具体的一些逻辑我们带过!有些具体代码逻辑,臣妾真的是心有余而力不足啊,分析不了啊。路漫漫啊,不知道能不能走到终点! 在分析源码前,我们来看下drm_hwcomposer的目录,如下:
drm_hwcomposer
├── Android.bp //编译脚本
├── backend //hwcomposer后端,是前端接口功能的内部实现,是真正做事的地方
├── bufferinfo //对应不同vendor的buffer接口
├── build_deploy.sh
├── compositor //kms处理送显逻辑代码
├── drm //drm,各个子模块代码
├── hwc2_device //对接Android hwc相关源码
├── include //头文件
├── MODULE_LICENSE_APACHE2
├── NOTICE
├── presubmit.sh
├── README.md
└── utils
2.2 drm_hwcomposer的HAL模块实现
HAL是个很神秘的东东,经常会看到一些求职网站显示需要招聘会HAL开发的Android工程师,但是绝大部分的Android开发人员只会使用,很少能独立开发一个属于自己的HAL。幸运的是我也是其中的绝大部分,不幸的是我也么有开发过属于自己的HAL实现。
//hwc2_device/hwc2_device.cpp
/**
* @brief
*
* @param module
* @param name
* @param dev
* @return int
* HookDevOpen,该方法中会去实例化一个Drmhwc2Device对象,其中去创建了一个DrmHwcTwo对象
*/
static int HookDevOpen(const struct hw_module_t *module, const char *name,
struct hw_device_t **dev) {
if (strcmp(name, HWC_HARDWARE_COMPOSER) != 0) {
ALOGE("Invalid module name- %s", name);
return -EINVAL;
}
auto ctx = std::make_unique<Drmhwc2Device>();//详见章节5.6
if (!ctx) {
ALOGE("Failed to allocate DrmHwcTwo");
return -ENOMEM;
}
ctx->common.tag = HARDWARE_DEVICE_TAG;
ctx->common.version = HWC_DEVICE_API_VERSION_2_0;
ctx->common.close = HookDevClose;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-cstyle-cast)
ctx->common.module = (hw_module_t *)module;
ctx->getCapabilities = HookDevGetCapabilities;
ctx->getFunction = HookDevGetFunction;//核心接口,详见5.5
*dev = &ctx.release()->common;
return 0;
}
static struct hw_module_methods_t hwc2_module_methods = {
.open = android::HookDevOpen,
};
/**
* @brief
* HAL标准化实现流程
*/
hw_module_t HAL_MODULE_INFO_SYM = {//注册HAL
.tag = HARDWARE_MODULE_TAG,
.module_api_version = HARDWARE_MODULE_API_VERSION(2, 0),
.id = HWC_HARDWARE_MODULE_ID,//hwcomposer
.name = "DrmHwcTwo module",
.author = "The Android Open Source Project",
.methods = &hwc2_module_methods,
.dso = nullptr,
.reserved = {0},
};
这一块的逻辑比较简单,就是上层hwcomposer服务加载HAL模块的时候,通过套路化的HAL编程实现加载HWC HAL的功能,并且上层调用open时候会初始化一个Drmhwc2Device返回给hwcomposer服务。其调用堆栈如下:
01-01 00:00:18.617 2262 2262 D HWC_DRM : #00 pc 000000000002bfd4 /vendor/lib64/hw/hwcomposer.drm.so (android::HookDevOpen(hw_module_t const*, char const*, hw_device_t**)+80)
01-01 00:00:18.617 2262 2262 D HWC_DRM : #01 pc 0000000000006684 /vendor/bin/hw/android.hardware.graphics.composer@2.1-service (android::hardware::graphics::composer::V2_1::passthrough::HwcLoader::openDeviceWithAdapter(hw_module_t const*, bool*)+376)
01-01 00:00:18.617 2262 2262 D HWC_DRM : #02 pc 000000000000639c /vendor/bin/hw/android.hardware.graphics.composer@2.1-service (android::hardware::graphics::composer::V2_1::passthrough::HwcLoader::createHalWithAdapter(hw_module_t const*)+48)
01-01 00:00:18.617 2262 2262 D HWC_DRM : #03 pc 00000000000062cc /vendor/bin/hw/android.hardware.graphics.composer@2.1-service (android::hardware::graphics::composer::V2_1::passthrough::HwcLoader::load()+164)
01-01 00:00:18.617 2262 2262 D HWC_DRM : #04 pc 0000000000006138 /vendor/bin/hw/android.hardware.graphics.composer@2.1-service (main+240)
01-01 00:00:18.617 2262 2262 D HWC_DRM : #05 pc 000000000008506c /apex/com.android.runtime/lib64/bionic/libc.so (__libc_init+108)
其中Drmhwc2Device的层级关系如下:
其代码定义如下:
//hardware/libhardware/include/hardware/hwcomposer2.h
typedef struct hwc2_device {
/* Must be the first member of this struct, since a pointer to this struct
* will be generated by casting from a hw_device_t* */
struct hw_device_t common;
void (*getCapabilities)(struct hwc2_device* device, uint32_t* outCount,
int32_t* /*hwc2_capability_t*/ outCapabilities);
hwc2_function_pointer_t (*getFunction)(struct hwc2_device* device,
int32_t /*hwc2_function_descriptor_t*/ descriptor);
} hwc2_device_t;
//hardware/libhardware/include/hardware/hardware.h
typedef struct hw_device_t {
tag; /** tag must be initialized to HARDWARE_DEVICE_TAG */
uint32_t version;
struct hw_module_t* module;
uint64_t reserved[12];
int (*close)(struct hw_device_t* device);
} hw_device_t;
hwc2_device/hwc2_device.cpp
struct Drmhwc2Device : hwc2_device {
DrmHwcTwo drmhwctwo;
};
这里可以看到hwc2_device在hw_device_t的基础上扩展了,两个函数接口,其中最最核心的就是getFunction,原来在HWC时代,上层调用HAL是直接通过固化的函数硬对接上去的,现在通过getFunction可以进行许多扩展,增强可实用性。
2.3 HookDevGetFunction功能
HookDevGetFunction,我们可以把它理解为是HAL层对上提供的功能函数接口表。这些函数具体可以分为三类:
-
Device functions:其核心功能函数包括:
- 注册回调事件 registerCallback
- 创建虚拟通路(非显示通路,如录屏)createVirtualDisplay
- 热拔插事件onHotplug
-
Display functions:其核心功能函数包括:
- 输入layer的管理createLayer / destroyLayer
- 叠加输出buffer设置setClientTarget / setOutputBuffer
- 显示触发present
- 设置vsync使能setVsyncEnabled
-
Layer functions:其核心功能函数包括:
- 设置层的buffer setBuffer:
- 设置层的属性 setBlendMode/setColor/setDataspace/setDisplayFrame(显示区域)/setPlaneAlpha/setSourceCrop/setZOrder
- 设置层的sidband流 setSidebandStream
- 设置叠加方式setCompositionType:Device表示硬件叠加,Client表示GPU叠加
//hwc2_device/hwc2_device.cpp
static hwc2_function_pointer_t HookDevGetFunction(struct hwc2_device * /*dev*/,
int32_t descriptor) {
auto func = static_cast<HWC2::FunctionDescriptor>(descriptor);
switch (func) {
// Device functions
...
case HWC2::FunctionDescriptor::RegisterCallback://注册回调,热插拔事件就是通过它回调上去的
return ToHook<HWC2_PFN_REGISTER_CALLBACK>(
DeviceHook<int32_t, decltype(&DrmHwcTwo::RegisterCallback),
&DrmHwcTwo::RegisterCallback, int32_t,
hwc2_callback_data_t, hwc2_function_pointer_t>);
// Display functions
case HWC2::FunctionDescriptor::AcceptDisplayChanges:
return ToHook<HWC2_PFN_ACCEPT_DISPLAY_CHANGES>(
DisplayHook<decltype(&HwcDisplay::AcceptDisplayChanges),
&HwcDisplay::AcceptDisplayChanges>);
case HWC2::FunctionDescriptor::CreateLayer:
return ToHook<HWC2_PFN_CREATE_LAYER>(
DisplayHook<decltype(&HwcDisplay::CreateLayer),
&HwcDisplay::CreateLayer, hwc2_layer_t *>);
case HWC2::FunctionDescriptor::DestroyLayer:
...
// Layer functions
case HWC2::FunctionDescriptor::SetCursorPosition:
return ToHook<HWC2_PFN_SET_CURSOR_POSITION>(
LayerHook<decltype(&HwcLayer::SetCursorPosition),
&HwcLayer::SetCursorPosition, int32_t, int32_t>);
case HWC2::FunctionDescriptor::SetLayerBlendMode:
return ToHook<HWC2_PFN_SET_LAYER_BLEND_MODE>(
LayerHook<decltype(&HwcLayer::SetLayerBlendMode),
&HwcLayer::SetLayerBlendMode, int32_t>);
case HWC2::FunctionDescriptor::SetLayerBuffer:
return ToHook<HWC2_PFN_SET_LAYER_BUFFER>(
LayerHook<decltype(&HwcLayer::SetLayerBuffer),
&HwcLayer::SetLayerBuffer, buffer_handle_t, int32_t>);
...
}
}
2.4 DrmHwcTwo的构建和初始化
兄弟你为啥叫DrmHwcTwo而不是叫DrmHwc2呢!你到底是李鬼还是李逵,让人傻傻分不清楚啊!让我们看看DrmHwcTwo的构造究竟干了些啥!
//drm-hwcomposer/hwc2_device/DrmHwcTwo.h
class DrmHwcTwo : public PipelineToFrontendBindingInterface {
public:
DrmHwcTwo();
~DrmHwcTwo() override = default;
std::pair<HWC2_PFN_HOTPLUG, hwc2_callback_data_t> hotplug_callback_{};
std::pair<HWC2_PFN_VSYNC, hwc2_callback_data_t> vsync_callback_{};
#if PLATFORM_SDK_VERSION > 29
std::pair<HWC2_PFN_VSYNC_2_4, hwc2_callback_data_t> vsync_2_4_callback_{};
std::pair<HWC2_PFN_VSYNC_PERIOD_TIMING_CHANGED, hwc2_callback_data_t>
period_timing_changed_callback_{};
#endif
std::pair<HWC2_PFN_REFRESH, hwc2_callback_data_t> refresh_callback_{};
// Device functions
HWC2::Error CreateVirtualDisplay(uint32_t width, uint32_t height,
int32_t *format, hwc2_display_t *display);
HWC2::Error DestroyVirtualDisplay(hwc2_display_t display);
void Dump(uint32_t *outSize, char *outBuffer);
uint32_t GetMaxVirtualDisplayCount();
HWC2::Error RegisterCallback(int32_t descriptor, hwc2_callback_data_t data,
hwc2_function_pointer_t function);
auto GetDisplay(hwc2_display_t display_handle) {
return displays_.count(display_handle) != 0
? displays_[display_handle].get()
: nullptr;
}
auto &GetResMan() {
return resource_manager_;
}
void ScheduleHotplugEvent(hwc2_display_t displayid, bool connected) {
deferred_hotplug_events_[displayid] = connected;
}
// PipelineToFrontendBindingInterface
bool BindDisplay(DrmDisplayPipeline *pipeline) override;
bool UnbindDisplay(DrmDisplayPipeline *pipeline) override;
void FinalizeDisplayBinding() override;
void SendVsyncEventToClient(hwc2_display_t displayid, int64_t timestamp,
uint32_t vsync_period) const;
void SendVsyncPeriodTimingChangedEventToClient(hwc2_display_t displayid,
int64_t timestamp) const;
private:
void SendHotplugEventToClient(hwc2_display_t displayid, bool connected);
//ResourceManager是个非常重要的核心类,他应该管理着DRM的资源
ResourceManager resource_manager_;// DrmHwcTwo类中的成员
std::map<hwc2_display_t, std::unique_ptr<HwcDisplay>> displays_;
std::map<DrmDisplayPipeline *, hwc2_display_t> display_handles_;
std::string mDumpString;
std::map<hwc2_display_t, bool> deferred_hotplug_events_;
std::vector<hwc2_display_t> displays_for_removal_list_;
uint32_t last_display_handle_ = kPrimaryDisplay;
};
//drm-hwcomposer/hwc2_device/DrmHwcTwo.cpp
DrmHwcTwo::DrmHwcTwo() : resource_manager_(this){}; // DrmHwcTwo的构造函数定义
//hwc2_device/hwc2_device.cpp
struct Drmhwc2Device : hwc2_device {
DrmHwcTwo drmhwctwo;
};
auto ctx = std::make_unique<Drmhwc2Device>();
DrmHwcTwo它是如此的潇洒,非常简单就是实例化了一个ResourceManager对象,然后将自己传递给了ResourceManager。
2.5 ResourceManager构造以及初始化流程
这里我们直接上代码,客官请看:
//drm/ResourceManager.cpp
ResourceManager::ResourceManager(
PipelineToFrontendBindingInterface *p2f_bind_interface)
: frontend_interface_(p2f_bind_interface) {
//p2f_bind_interface指向DrmHwcTwo对象
if (uevent_listener_.Init() != 0) {
ALOGE("Can't initialize event listener");
}
}
很简单,就是去实例化一个ResourceManager对象,其构造函数中处理初始化了uevent_listener等成员,也没啥了frontend_interface_指向DrmHwcTwo对象。到这里,是不是读者感觉到一脸懵逼,Resourceanager感觉啥也木有做啊,其实它是个非常重要的核心类,它管理着DRM的资源(对于libdrm编程熟悉的小伙伴,应该对于Resource肯定很熟悉了)。
那这里的ResourceManager::Init啥时候被调用呢!其实是在SurfaceFlinger的初始化过程时,设置callback给HWC,层层传递后就会调用到DrmHwcTwo::RegisterCallback进而调用到了 resource_manager_.Init();
//hwc2_device/hwc2_device.cpp
case HWC2::FunctionDescriptor::RegisterCallback:
return ToHook<HWC2_PFN_REGISTER_CALLBACK>(
DeviceHook<int32_t, decltype(&DrmHwcTwo::RegisterCallback),
&DrmHwcTwo::RegisterCallback, int32_t,
hwc2_callback_data_t, hwc2_function_pointer_t>);
//hwc2_device/DrmHwcTwo.cpp
HWC2::Error DrmHwcTwo::RegisterCallback(int32_t descriptor,
hwc2_callback_data_t data,
hwc2_function_pointer_t function) {
switch (static_cast<HWC2::Callback>(descriptor)) {
case HWC2::Callback::Hotplug: {
hotplug_callback_ = std::make_pair(HWC2_PFN_HOTPLUG(function), data);
if (function != nullptr) {
// ResourceManager resource_manager_;
resource_manager_.Init();
} else {
resource_manager_.DeInit();
/* Headless display may still be here, remove it */
displays_.erase(kPrimaryDisplay);
}
break;
}
case HWC2::Callback::Refresh: {
refresh_callback_ = std::make_pair(HWC2_PFN_REFRESH(function), data);
break;
}
case HWC2::Callback::Vsync: {
vsync_callback_ = std::make_pair(HWC2_PFN_VSYNC(function), data);
break;
}
#if PLATFORM_SDK_VERSION > 29
case HWC2::Callback::Vsync_2_4: {
vsync_2_4_callback_ = std::make_pair(HWC2_PFN_VSYNC_2_4(function), data);
break;
}
case HWC2::Callback::VsyncPeriodTimingChanged: {
period_timing_changed_callback_ = std::
make_pair(HWC2_PFN_VSYNC_PERIOD_TIMING_CHANGED(function), data);
break;
}
#endif
default:
break;
}
return HWC2::Error::None;
}
我们看下ResourceManager::Init实现:
ResourceManager 初始化到底初始化了什么呢?
[drm-hwcomposer/drm/ResourceManager.cpp]
void ResourceManager::Init() {
if (initialized_) {
ALOGE("Already initialized"); // 已经初始化了,避免重复初始化
return;
}
char path_pattern[PROPERTY_VALUE_MAX];
// Could be a valid path or it can have at the end of it the wildcard %
// which means that it will try open all devices until an error is met.
int path_len = property_get("vendor.hwc.drm.device", path_pattern,
"/dev/dri/card%");
if (path_pattern[path_len - 1] != '%') {
AddDrmDevice(std::string(path_pattern));//详见章节2.6
} else {
path_pattern[path_len - 1] = '\0';
for (int idx = 0;; ++idx) {
std::ostringstream path;
path << path_pattern << idx;
struct stat buf {};
if (stat(path.str().c_str(), &buf) != 0)
break;
if (DrmDevice::IsKMSDev(path.str().c_str())) {
AddDrmDevice(path.str());
}
}
}
/**上面一大坨代码,简单理解就是找到DRM的设备节点,然后打开它,在我的设备上是/dev/dri/card0 */
/** AddDrmDevice中去初始化DRM各种各样的资源 **/
char scale_with_gpu[PROPERTY_VALUE_MAX];
property_get("vendor.hwc.drm.scale_with_gpu", scale_with_gpu, "0");
scale_with_gpu_ = bool(strncmp(scale_with_gpu, "0", 1));// 使用GPU缩放的标志
if (BufferInfoGetter::GetInstance() == nullptr) {
ALOGE("Failed to initialize BufferInfoGetter");
// 初始化BufferInfoGetter,用于从Gralloc Mapper中获取buffer的属性信息
return;
}
uevent_listener_.RegisterHotplugHandler([this] {// 注册热插拔的回调
const std::lock_guard<std::mutex> lock(GetMainLock());
UpdateFrontendDisplays();
});
//详见章节2.7
UpdateFrontendDisplays();//这里会Send Hotplug Event To Client,SF会收到一次onComposerHalHotplug
// attached_pipelines_的初始化、更新
initialized_ = true; // 设置标记,表明已经初始化过了
}
重点来看下AddDrmDevice:
AddDrmDevice
[drm-hwcomposer/drm/ResourceManager.cpp]
int ResourceManager::AddDrmDevice(const std::string &path) {
auto drm = std::make_unique<DrmDevice>();//创建DrmDevice对象
int ret = drm->Init(path.c_str());//初始化DrmDevice,path一般就是/dev/dri/card0
drms_.push_back(std::move(drm));//保存到drms_中,便于后续的DeleteDrmDevices删除
return ret;
}
2.6 DrmDevice的实现
一个重要的角色登场DrmDevice,我们可以理解它是对DRM设备进行抽象描述的一个类,用来后续的送显示,如下是其定义:
这里我们先看DrmDevice的实现,DrmDevice的构造函数中创建一个 DrmFbImporter 对象
[drm-hwcomposer/drm/DrmDevice.cpp]
DrmDevice::DrmDevice() {
drm_fb_importer_ = std::make_unique<DrmFbImporter>(*this);
}
这里的DrmFbImporter后面会用到,用于后续DRM/KMS显示流程!
接下来我们继续往下看,看看DrmDevice::Init的实现逻辑,它主要完成了完成了获取DRM资源的初始化,CRTC、Encoder、Connector、Plane这些资源都获取到了!完美抽象出下面的框图!
//drm/DrmDevice.cpp
auto DrmDevice::Init(const char *path) -> int {
/* TODO: Use drmOpenControl here instead */
fd_ = UniqueFd(open(path, O_RDWR | O_CLOEXEC));//打开设备,一般是/dev/dri/card0
if (!fd_) {//异常处理
// NOLINTNEXTLINE(concurrency-mt-unsafe): Fixme
ALOGE("Failed to open dri %s: %s", path, strerror(errno));
return -ENODEV;
}
//通用设置 设置DRM_CLIENT_CAP_UNIVERSAL_PLANES,获取所有支持的Plane资源
int ret = drmSetClientCap(GetFd(), DRM_CLIENT_CAP_UNIVERSAL_PLANES, 1);
if (ret != 0) {
ALOGE("Failed to set universal plane cap %d", ret);
return ret;
}
//通用设置 设置DRM_CLIENT_CAP_ATOMIC,告知DRM驱动该应用程序支持Atomic操作
ret = drmSetClientCap(GetFd(), DRM_CLIENT_CAP_ATOMIC, 1);
if (ret != 0) {
ALOGE("Failed to set atomic cap %d", ret);
return ret;
}
#ifdef DRM_CLIENT_CAP_WRITEBACK_CONNECTORS
// 设置开启 writeback
ret = drmSetClientCap(GetFd(), DRM_CLIENT_CAP_WRITEBACK_CONNECTORS, 1);
if (ret != 0) {
ALOGI("Failed to set writeback cap %d", ret);
}
#endif
uint64_t cap_value = 0;
if (drmGetCap(GetFd(), DRM_CAP_ADDFB2_MODIFIERS, &cap_value) != 0) {
ALOGW("drmGetCap failed. Fallback to no modifier support.");
cap_value = 0;
}
HasAddFb2ModifiersSupport_ = cap_value != 0;//是否支持Add Fb2 Modifiers
drmSetMaster(GetFd());
if (drmIsMaster(GetFd()) == 0) {
ALOGE("DRM/KMS master access required");
return -EACCES;
}
//获取DrmModeRes
auto res = MakeDrmModeResUnique(GetFd());
if (!res) {
ALOGE("Failed to get DrmDevice resources");
return -ENODEV;
}
// 最小和最大的分辨率
min_resolution_ = std::pair<uint32_t, uint32_t>(res->min_width,
res->min_height);
max_resolution_ = std::pair<uint32_t, uint32_t>(res->max_width,
res->max_height);
// 获取所有的CRTC,创建DrmCrtc对象,并加入crtcs_这个vector<unique_ptr<DrmCrtc>>
for (int i = 0; i < res->count_crtcs; ++i) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic)
auto crtc = DrmCrtc::CreateInstance(*this, res->crtcs[i], i);
if (crtc) {
crtcs_.emplace_back(std::move(crtc));
}
}
//获取Encoder 建DrmEncoder对象,并加入encoders_这个vector<unique_ptr<DrmEncoder>>
for (int i = 0; i < res->count_encoders; ++i) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic)
auto enc = DrmEncoder::CreateInstance(*this, res->encoders[i], i);
if (enc) {
encoders_.emplace_back(std::move(enc));
}
}
// 获取所有的Connector,创建DrmConnector对象,并加入connectors_这个vector<unique_ptr<DrmConnector>>
// 或放入writeback_connectors_这个vector中
for (int i = 0; i < res->count_connectors; ++i) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic)
auto conn = DrmConnector::CreateInstance(*this, res->connectors[i], i);
if (!conn) {
continue;
}
if (conn->IsWriteback()) {
writeback_connectors_.emplace_back(std::move(conn));
} else {
connectors_.emplace_back(std::move(conn));
}
}
// 获取drmModePlaneRes
auto plane_res = MakeDrmModePlaneResUnique(GetFd());
if (!plane_res) {
ALOGE("Failed to get plane resources");
return -ENOENT;
}
// 获取所有的Plane,创建DrmPlane对象,并加入planes_这个vector<unique_ptr<DrmPlane>>
for (uint32_t i = 0; i < plane_res->count_planes; ++i) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic)
auto plane = DrmPlane::CreateInstance(*this, plane_res->planes[i]);
if (plane) {
planes_.emplace_back(std::move(plane));
}
}
return 0;
}
2.7 UpdateFrontendDisplays
让我们梦回大唐,错了让我们回到ResourceManager::Init()中,在最后的逻辑中调用了UpdateFrontendDisplays方法.
//drm/ResourceManager.cpp
auto ResourceManager::GetOrderedConnectors() -> std::vector<DrmConnector *> {
/* Put internal displays first then external to
* ensure Internal will take Primary slot
*/
std::vector<DrmConnector *> ordered_connectors;
for (auto &drm : drms_) {
for (const auto &conn : drm->GetConnectors()) {
// 判断当前连接器是否为内部连接器
// 如果是内部连接器,则将其添加到ordered_connectors中
if (conn->IsInternal()) {
ordered_connectors.emplace_back(conn.get());
}
}
}
for (auto &drm : drms_) {
for (const auto &conn : drm->GetConnectors()) {
// 判断当前连接器是否为外部连接器
// 如果是外部连接器,则将其添加到ordered_connectors中
if (conn->IsExternal()) {
ordered_connectors.emplace_back(conn.get());
}
}
}
return ordered_connectors;
}
void ResourceManager::UpdateFrontendDisplays() {
//获取所有的连接器,并按照连接器的优先级进行排序 internal displays放前面,external放后面的排序connectors
auto ordered_connectors = GetOrderedConnectors();
for (auto *conn : ordered_connectors) {
conn->UpdateModes();
bool connected = conn->IsConnected();
// std::map<DrmConnector *, std::unique_ptr<DrmDisplayPipeline>>attached_pipelines_;
bool attached = attached_pipelines_.count(conn) != 0;// 判断map中是否存在key为conn的元素
if (connected != attached) {
ALOGI("%s connector %s", connected ? "Attaching" : "Detaching",
conn->GetName().c_str());
if (connected) {// connected==true and attached == false,
// 说明当前连接器需要被绑定到frontend上
// 创建一个DrmDisplayPipeline对象,并将其绑定到frontend_interface_上
// 然后将该对象添加到attached_pipelines_中
// 最后调用frontend_interface_的BindDisplay方法将该对象绑定到frontend上
auto pipeline = DrmDisplayPipeline::CreatePipeline(*conn);
//frontend_interface_指向DrmHwcTwo对象
frontend_interface_->BindDisplay(pipeline.get());
attached_pipelines_[conn] = std::move(pipeline);
} else {// connected==false and attached == true,解除
// 当前连接器与frontend的绑定关系
// 首先从attached_pipelines_中移除该连接器
// 然后调用frontend_interface_的UnbindDisplay方法解除绑定
auto &pipeline = attached_pipelines_[conn];
frontend_interface_->UnbindDisplay(pipeline.get());
attached_pipelines_.erase(conn);
}
}
}
// 最后调用frontend_interface_的FinalizeDisplayBinding方法完成绑定操作
frontend_interface_->FinalizeDisplayBinding();
}
我们接着继续看下DrmDisplayPipeline::CreatePipeline是如何构建DrmDisplayPipeline的,以及它DrmDisplayPipeline的定义!
//drm/DrmDisplayPipeline.h
/**
* @brief
* 主要用于封装drm相关的组件,包括plane、encoder、crtc等
* 1. 创建一个DrmDisplayPipeline对象
* 2. 获取可用的planes
* 3. 返回一个DrmDisplayPipeline对象
*/
struct DrmDisplayPipeline {
static auto CreatePipeline(DrmConnector &connector)
-> std::unique_ptr<DrmDisplayPipeline>;
auto GetUsablePlanes()
-> std::vector<std::shared_ptr<BindingOwner<DrmPlane>>>;
DrmDevice *device;
std::shared_ptr<BindingOwner<DrmConnector>> connector;
std::shared_ptr<BindingOwner<DrmEncoder>> encoder;
std::shared_ptr<BindingOwner<DrmCrtc>> crtc;
std::shared_ptr<BindingOwner<DrmPlane>> primary_plane;
std::unique_ptr<DrmAtomicStateManager> atomic_state_manager;
};
//drm/DrmDisplayPipeline.cpp
DrmDisplayPipeline::CreatePipeline
TryCreatePipelineUsingEncoder
TryCreatePipeline
static auto TryCreatePipeline(DrmDevice &dev, DrmConnector &connector,
DrmEncoder &enc, DrmCrtc &crtc)
-> std::unique_ptr<DrmDisplayPipeline> {
/* Check if resources are available */
auto pipe = std::make_unique<DrmDisplayPipeline>();
pipe->device = &dev;
pipe->connector = connector.BindPipeline(pipe.get());
pipe->encoder = enc.BindPipeline(pipe.get());
pipe->crtc = crtc.BindPipeline(pipe.get());
if (!pipe->connector || !pipe->encoder || !pipe->crtc) {
return {};
}
这里的DrmDisplayPipeline,就是drm下kms显示通路的一个管道,将crtc,encoder,connector组合起来的一个类!
2.8 DrmHwcTwo如何处理HwcDisplay的构建
我们接着接续看下DrmHwcTwo是如何继续处理HwcDisplay,这其中牵涉到几个重要的成员和方法:
//hwc2_device/DrmHwcTwo.h
inline constexpr uint32_t kPrimaryDisplay = 0;
class HwcDisplay {
uint32_t last_display_handle_ = kPrimaryDisplay;
//typedef uint64_t hwc2_display_t;
//typedef uint64_t hwc2_display_t;
std::map<hwc2_display_t, std::unique_ptr<HwcDisplay>> displays_;
std::map<DrmDisplayPipeline *, hwc2_display_t> display_handles_;
// PipelineToFrontendBindingInterface
//创建HwcDisplay
bool BindDisplay(DrmDisplayPipeline *pipeline) override;
//销毁HwcDisplay
bool UnbindDisplay(DrmDisplayPipeline *pipeline) override;
//完成显示绑定,发送display插拔事件给SurfaceFlinger,告知SurfaceFlinger当前显示设备的状态
void FinalizeDisplayBinding() override;
}
我们先看看BindDisplay和UnbindDisplay的实现!
//hwc2_device/DrmHwcTwo.cpp
bool DrmHwcTwo::BindDisplay(DrmDisplayPipeline *pipeline) {
if (display_handles_.count(pipeline) != 0) {
ALOGE("%s, pipeline is already used by another display, FIXME!!!: %p",
__func__, pipeline);
return false;
}
uint32_t disp_handle = kPrimaryDisplay;
if (displays_.count(kPrimaryDisplay) != 0 &&
!displays_[kPrimaryDisplay]->IsInHeadlessMode()) {
disp_handle = ++last_display_handle_;
}
if (displays_.count(disp_handle) == 0) {
/* Create a new HwcDisplay */
auto disp = std::make_unique<HwcDisplay>(disp_handle,
HWC2::DisplayType::Physical, this);
//填充displays_容器
displays_[disp_handle] = std::move(disp);
}
ALOGI("Attaching pipeline '%s' to the display #%d%s",
pipeline->connector->Get()->GetName().c_str(), (int)disp_handle,
disp_handle == kPrimaryDisplay ? " (Primary)" : "");
//给HwcDisplay设置pipeline
displays_[disp_handle]->SetPipeline(pipeline);
//填充display_handles_容器
display_handles_[pipeline] = disp_handle;
return true;
}
bool DrmHwcTwo::UnbindDisplay(DrmDisplayPipeline *pipeline) {
if (display_handles_.count(pipeline) == 0) {
ALOGE("%s, can't find the display, pipeline: %p", __func__, pipeline);
return false;
}
auto handle = display_handles_[pipeline];
display_handles_.erase(pipeline);
ALOGI("Detaching the pipeline '%s' from the display #%i%s",
pipeline->connector->Get()->GetName().c_str(), (int)handle,
handle == kPrimaryDisplay ? " (Primary)" : "");
if (displays_.count(handle) == 0) {
ALOGE("%s, can't find the display, handle: %" PRIu64, __func__, handle);
return false;
}
displays_[handle]->SetPipeline(nullptr);
/* We must defer display disposal and removal, since it may still have pending
* HWC_API calls scheduled and waiting until ueventlistener thread releases
* main lock, otherwise transaction may fail and SF may crash
*/
if (handle != kPrimaryDisplay) {
displays_for_removal_list_.emplace_back(handle);
}
return true;
}
上述的主要逻辑就是通过前面构建出来的DrmDisplayPipeline和新构建的HwcDisplay填充displays_和display_handles_容器。这里我们接着看下HwcDisplay的实现!
//hwc2_device/HwcDisplay.h
/**
* @brief
* 这里的HwcDisplay是HWC2::Display在HAL层的实现,
* 它负责管理一个Display的配置和状态,
* 包括创建和销毁Layer,
* 以及处理Display的配置和状态变化。
*
* 它还负责处理Display的HWC Hooks,
* 例如AcceptDisplayChanges、CreateLayer、DestroyLayer等。
*
* 它还负责处理Display的VSync事件,
* 例如处理VSync事件、发送VSync事件等。
*
* 它还负责处理Display的HWC2::Error,
* 例如处理HWC2::Error等。
*
*/
class HwcDisplay {
HwcDisplay(hwc2_display_t handle, HWC2::DisplayType type, DrmHwcTwo *hwc2);
/* SetPipeline should be carefully used only by DrmHwcTwo hotplug handlers */
void SetPipeline(DrmDisplayPipeline *pipeline);
HWC2::Error CreateComposition(AtomicCommitArgs &a_args);
std::vector<HwcLayer *> GetOrderLayersByZPos();
// HWC Hooks
HWC2::Error AcceptDisplayChanges();
HWC2::Error CreateLayer(hwc2_layer_t *layer);
const Backend *backend() const;
void set_backend(std::unique_ptr<Backend> backend);
}
这里要怎么理解这个HwcDisplay呢?这里的HwcDisplay是HWC2::Display在HAL层的实现,它的核心功能主要是:
- 它负责管理一个Display的配置和状态,包括创建和销毁Layer,以及处理Display的配置和状态变化。
- 它还负责处理Display的HWC Hooks,例如AcceptDisplayChanges、CreateLayer、DestroyLayer等。
- 它还负责处理Display的VSync事件,例如处理VSync事件、发送VSync事件等。
- 它还负责处理Display的HWC2::Error,例如处理HWC2::Error等。
我们接着继续看下HwcDisplay的构造,比较简单:
HwcDisplay::HwcDisplay(hwc2_display_t handle, HWC2::DisplayType type,
DrmHwcTwo *hwc2)
: hwc2_(hwc2),//关联的DrmHwcTwo对象
handle_(handle),//typedef uint64_t hwc2_display_t; handle本质就是一个uint64_t整数值
type_(type),// Physical 物理屏幕
color_transform_hint_(HAL_COLOR_TRANSFORM_IDENTITY) {
...
}
接着继续来看下HwcDisplay::SetPipeline
void HwcDisplay::SetPipeline(DrmDisplayPipeline *pipeline) {
pipeline_ = pipeline;
if (pipeline != nullptr) {//会进入这个分支
ChosePreferredConfig();
Init();//调用HwcDisplay::Init()逻辑
hwc2_->ScheduleHotplugEvent(handle_, /*connected = */ true);
} else {
...
}
}
HWC2::Error HwcDisplay::Init() {
if (!IsInHeadlessMode()) {
//通过后端管理为HwcDisplay设置后端,这个后端是干什么的呢
ret = BackendManager::GetInstance().SetBackendForDisplay(this);
if (ret) {
ALOGE("Failed to set backend for d=%d %d\n", int(handle_), ret);
return HWC2::Error::BadDisplay;
}
}
}
这里又是后端管理BackendManager,又是后端Backend!要怎么理解呢?
既然有了backend,那么肯定有frontend,那么谁是backend ,谁是frontend? 扮演的角色功能分别是什么?
初步看起来貌似是:
- frontend 对外提供调用的接口,外部使用者呼叫 front end 暴漏出的接口来呼叫某一功能;
- backend 内部的实现逻辑,是前端接口功能的内部实现,是真正做事的地方;
太多了,太多了。完全放在一篇里面不够。今天先这样了,后续drm_hwcomposer另起一篇完成余下的相关分析!