性能工具之 Kafka 快速 BenchMark 测试示例

news2024/12/27 1:58:01

文章目录

  • 一、什么是 Kafka?
  • 二、 Benchmark 测试工具
  • 三、 Benchmark 测试场景
    • 1、生产者基准测试
    • 2、消费者基准测试
  • 四、小结

一、什么是 Kafka?

消息队列(Message Queue)简称 MQ,是一种跨进程的通信机制,通常用于应用程序间进行数据的异步传输,MQ 产品在架构中通常也被叫作“消息中间件”。它的最主要职责就是保证服务间进行可靠的数据传输,同时实现服务间的解耦。

在架构领域,很多厂商都开发了自己的 MQ 产品,最具代表性的开源产品有:

  • Kafka
  • ActiveMQ
  • ZeroMQ
  • RabbitMQ
  • RocketMQ

每一种产品都有自己不同的设计与实现原理,但根本的目标都是相同的:为进程间通信提供可靠的异步传输机制。Kafka 是最受欢迎的开源消息中间件之一,在全球范围内被广泛应用。

一个消息队列 Kafka 集群包括 Producer、Kafka Broker、Consumer Group、Zookeeper。
在这里插入图片描述
(图片来自于网络)

二、 Benchmark 测试工具

本文主要介绍如何利用 Kafka 自带的性能测试脚本测试Kafka的性能,以及如何使用 Kafdrop 监控 Kafka 的工作状态,最后给出了Kafka的Benchmark测试数据。

在 Kafka 安装目录 $KAFKA_HOME/bin/ 有以下跟性能相关的测试脚本:

#生产者和消费者的性能测试工具
kafka-producer-perf-test.sh
kafka-consumer-perf-test.sh

#用来测试生产者和消费者功能的,现使用率很低。
kafka-verifiable-consumer.sh
kafka-verifiable-producer.sh

# Kafka 的测试框架,用于执行各种基准测试和负载测试。一般的 Kafka 用户应该用不到这个脚本。
trogdor.sh
windows

本次我们测试主要使用以下两个脚本:
1、kafka-producer-perf-test.sh:用于测试Kafka Producer的性能,主要输出4项指标,总共发送消息量(以MB为单位),每秒发送消息量(MB/second),发送消息总数,每秒发送消息数(records/second)。

主要参数如下:

[root@data-server bin]# ./kafka-producer-perf-test.sh 
usage: producer-performance [-h] --topic TOPIC --num-records NUM-RECORDS [--payload-delimiter PAYLOAD-DELIMITER] --throughput THROUGHPUT
                            [--producer-props PROP-NAME=PROP-VALUE [PROP-NAME=PROP-VALUE ...]] [--producer.config CONFIG-FILE] [--print-metrics]
                            [--transactional-id TRANSACTIONAL-ID] [--transaction-duration-ms TRANSACTION-DURATION] (--record-size RECORD-SIZE |
                            --payload-file PAYLOAD-FILE)

This tool is used to verify the producer performance.

optional arguments:
  -h, --help             show this help message and exit
  --topic TOPIC          produce messages to this topic
  --num-records NUM-RECORDS
                         number of messages to produce
  --payload-delimiter PAYLOAD-DELIMITER
                         provides delimiter to be used when --payload-file is provided. Defaults  to  new  line. Note that this parameter will be ignored if --
                         payload-file is not provided. (default: \n)
  --throughput THROUGHPUT
                         throttle maximum message throughput to *approximately* THROUGHPUT messages/sec. Set this to -1 to disable throttling.
  --producer-props PROP-NAME=PROP-VALUE [PROP-NAME=PROP-VALUE ...]
                         kafka producer related configuration properties like bootstrap.servers,client.id etc.  These configs take precedence over those passed
                         via --producer.config.
  --producer.config CONFIG-FILE
                         producer config properties file.
  --print-metrics        print out metrics at the end of the test. (default: false)
  --transactional-id TRANSACTIONAL-ID
                         The transactionalId to use if  transaction-duration-ms  is  >  0.  Useful  when  testing  the  performance of concurrent transactions.
                         (default: performance-producer-default-transactional-id)
  --transaction-duration-ms TRANSACTION-DURATION
                         The max age of each transaction. The commitTransaction will be  called  after  this time has elapsed. Transactions are only enabled if
                         this value is positive. (default: 0)

  either --record-size or --payload-file must be specified but not both.

  --record-size RECORD-SIZE
                         message size in bytes. Note that you must provide exactly one of --record-size or --payload-file.
  --payload-file PAYLOAD-FILE
                         file to read the message payloads from. This works only  for  UTF-8  encoded  text  files.  Payloads will be read from this file and a
                         payload will be randomly selected when sending messages. Note that you must provide exactly one of --record-size or --payload-file.

2、kafka-consumer-perf-test.sh:用于测试Kafka Consumer的性能,测试指标与Producer性能测试脚本一样

主要参数如下:

[root@data-server bin]# ./kafka-consumer-perf-test.sh
Missing required option(s) [bootstrap-server]
Option                                   Description                            
------                                   -----------                            
--bootstrap-server <String: server to    REQUIRED unless --broker-list          
  connect to>                              (deprecated) is specified. The server
                                           (s) to connect to.                   
--broker-list <String: broker-list>      DEPRECATED, use --bootstrap-server     
                                           instead; ignored if --bootstrap-     
                                           server is specified. The broker list 
                                           string in the form HOST1:PORT1,HOST2:
                                           PORT2.                               
--consumer.config <String: config file>  Consumer config properties file.       
--date-format <String: date format>      The date format to use for formatting  
                                           the time field. See java.text.       
                                           SimpleDateFormat for options.        
                                           (default: yyyy-MM-dd HH:mm:ss:SSS)   
--fetch-size <Integer: size>             The amount of data to fetch in a       
                                           single request. (default: 1048576)   
--from-latest                            If the consumer does not already have  
                                           an established offset to consume     
                                           from, start with the latest message  
                                           present in the log rather than the   
                                           earliest message.                    
--group <String: gid>                    The group id to consume on. (default:  
                                           perf-consumer-20126)                 
--help                                   Print usage information.               
--hide-header                            If set, skips printing the header for  
                                           the stats                            
--messages <Long: count>                 REQUIRED: The number of messages to    
                                           send or consume                      
--num-fetch-threads <Integer: count>     DEPRECATED AND IGNORED: Number of      
                                           fetcher threads. (default: 1)        
--print-metrics                          Print out the metrics.                 
--reporting-interval <Long:              Interval in milliseconds at which to   
  interval_ms>                             print progress info. (default: 5000) 
--show-detailed-stats                    If set, stats are reported for each    
                                           reporting interval as configured by  
                                           reporting-interval                   
--socket-buffer-size <Integer: size>     The size of the tcp RECV size.         
                                           (default: 2097152)                   
--threads <Integer: count>               DEPRECATED AND IGNORED: Number of      
                                           processing threads. (default: 10)    
--timeout [Long: milliseconds]           The maximum allowed time in            
                                           milliseconds between returned        
                                           records. (default: 10000)            
--topic <String: topic>                  REQUIRED: The topic to consume from.   
--version                                Display Kafka version.                 

三、 Benchmark 测试场景

测试环境说明:

  • 前置条件:1个Broker(节点),1个Topic(主题),3个Partition(分区),无Replication(副本),异步模式,消息Payload为300字节,消息数量5000万(Kafka设置保持与生产环境一致)
  • 被测版本:bitnami/kafka:2.8.1 被测服务器:通用计算型 | 8vCPUs | 16GiB | s3.2xlarge.2 | 通用型SSD | 300 GiB IOPS上限5,400,IOPS突发上限8,000 ,最大吞吐量 250 MB/s
  • 测试客户端:通用计算型 | 8vCPUs | 16GiB | s3.2xlarge.2 | 通用型SSD | 500 GiB IOPS上限7,800,IOPS突发上限8,000,最大吞吐量 250 MB/s
  • 测试工具:Kafka自带的基准工具

在这里插入图片描述
(简要测试拓扑)

1、生产者基准测试

测试项目:Kafka Producer 性能基准测试
测试目标:测试设置测试参数:acks=1,消息Payload为300字节,消息数量5000万时Producer时的吞吐量

./kafka-producer-perf-test.sh --topic zuozewei --num-records 50000000 --throughput -1 --record-size 300 --producer-props bootstrap.servers=192.168.1.213:9092 acks=1

相关参数解释如下:

--topic 指定topic
--num-records	指定生产数据量
--throughput	指定吞吐量(-1表示无限制)
--record-size   record数据大小
--producer-props key=value	指定producer服务地址配置,该命令允许你在后面指定要设置的生产者参数,比如压缩算法、延时时间等。
--acks  指定发送出去的消息的持久化机制

补充下 acks 的几种参数的解释:

  • acks=0:不管写入broker的消息到底成功与否,发送一条消息出去,立马就可以发送下一条消息,吞吐量最高的方式,会发生消息丢失;
  • acks=all/acks=-1:leader写入成功以后,必须等待其他ISR中的副本都写入成功,才可以返回响应说这条消息写入成功了,此时会收到一个回调通知;
  • acks=1:只要leader写入成功,就认为消息成功了,默认值,会发生消息丢失。

测试结果如下:

[root@data-server bin]# ./kafka-producer-perf-test.sh --topic zuozewei --num-records 50000000 --throughput -1 --record-size 300 --producer-props bootstrap.servers=192.168.1.213:9092 acks=1
1823612 records sent, 364722.4 records/sec (104.35 MB/sec), 2.0 ms avg latency, 412.0 ms max latency.
2289024 records sent, 457804.8 records/sec (130.98 MB/sec), 1.4 ms avg latency, 52.0 ms max latency.
2300541 records sent, 460108.2 records/sec (131.64 MB/sec), 1.2 ms avg latency, 30.0 ms max latency.
2306616 records sent, 461323.2 records/sec (131.99 MB/sec), 1.1 ms avg latency, 18.0 ms max latency.
2242778 records sent, 448555.6 records/sec (128.33 MB/sec), 1.1 ms avg latency, 16.0 ms max latency.
2140578 records sent, 428115.6 records/sec (122.48 MB/sec), 1.2 ms avg latency, 19.0 ms max latency.
2222668 records sent, 444533.6 records/sec (127.18 MB/sec), 1.2 ms avg latency, 28.0 ms max latency.
2205768 records sent, 441153.6 records/sec (126.22 MB/sec), 1.2 ms avg latency, 18.0 ms max latency.
2181274 records sent, 436254.8 records/sec (124.81 MB/sec), 1.4 ms avg latency, 52.0 ms max latency.
2094473 records sent, 418894.6 records/sec (119.85 MB/sec), 1.4 ms avg latency, 17.0 ms max latency.
2024219 records sent, 404843.8 records/sec (115.83 MB/sec), 1.4 ms avg latency, 14.0 ms max latency.
2000186 records sent, 400037.2 records/sec (114.45 MB/sec), 1.7 ms avg latency, 29.0 ms max latency.
1913048 records sent, 382609.6 records/sec (109.47 MB/sec), 2.4 ms avg latency, 71.0 ms max latency.
2125272 records sent, 425054.4 records/sec (121.61 MB/sec), 1.4 ms avg latency, 19.0 ms max latency.
2191209 records sent, 438241.8 records/sec (125.38 MB/sec), 1.2 ms avg latency, 15.0 ms max latency.
2243998 records sent, 448799.6 records/sec (128.40 MB/sec), 1.2 ms avg latency, 22.0 ms max latency.
2165062 records sent, 433012.4 records/sec (123.89 MB/sec), 1.1 ms avg latency, 17.0 ms max latency.
2059370 records sent, 411874.0 records/sec (117.84 MB/sec), 1.2 ms avg latency, 18.0 ms max latency.
2182918 records sent, 436583.6 records/sec (124.91 MB/sec), 1.3 ms avg latency, 26.0 ms max latency.
2169204 records sent, 433840.8 records/sec (124.12 MB/sec), 1.4 ms avg latency, 26.0 ms max latency.
2100874 records sent, 420174.8 records/sec (120.21 MB/sec), 1.2 ms avg latency, 12.0 ms max latency.
2056641 records sent, 411328.2 records/sec (117.68 MB/sec), 1.5 ms avg latency, 21.0 ms max latency.
2059852 records sent, 411970.4 records/sec (117.87 MB/sec), 1.6 ms avg latency, 26.0 ms max latency.
50000000 records sent, 426686.692495 records/sec (122.08 MB/sec), 1.37 ms avg latency, 412.00 ms max latency, 1 ms 50th, 2 ms 95th, 9 ms 99th, 24 ms 99.9th.
[root@data-server bin]# 

测试结果会打印出测试生产者的吞吐量 (MB/s)、消息发送延时以及各种分位数下的延时。一般情况下,消息延时不是一个简单的数字,而是一组分布,而我们应该关心延时的概率分布情况,仅仅知道一个平均值是没有意义的,这里我们关注到99th 分位就可以了。比如在上面的输出中,99th 值是 9 ms,这表明测试生产者生产的消息中,有 99% 消息的延时都在 9 ms 以内。我们完全可以把这个数据当作这个生产者对外承诺的 SLA。

简要解析以上结果:数据:5000万,平均吞吐量(TPS):约 42 万条/秒,99.9th(百分位)延时:9 毫秒,平均速率:122 MB/s

Kafdrop 服务端监控截图:
在这里插入图片描述
我们可以看到5000万条数据全部被 Broker 接收。

消息服务器资源监控截图:
在这里插入图片描述
我们可以一个 Broker 的 CPU 使用量约为 44 %,内存使用率为 90%,磁盘写入速率为149 MB/s。

2、消费者基准测试

测试命令如下:

./kafka-consumer-perf-test.sh --topic zuozewei --threads 1 --messages 50000000  --broker-list 192.168.1.213:9092

相关参数解释如下:

--topic 指定topic
--threads 指定线程数
--messages 指定消费数据条数
--broker-list kafka broker列表地址
[root@data-server bin]# ./kafka-consumer-perf-test.sh --topic zuozewei --threads 1 --messages 50000000  --broker-list 192.168.1.213:9092
WARNING: option [threads] and [num-fetch-threads] have been deprecated and will be ignored by the test
start.time, end.time, data.consumed.in.MB, MB.sec, data.consumed.in.nMsg, nMsg.sec, rebalance.time.ms, fetch.time.ms, fetch.MB.sec, fetch.nMsg.sec
2024-04-18 16:17:58:373, 2024-04-18 16:19:03:556, 14305.1147, 219.4608, 50000000, 767071.1689, 452, 64731, 220.9933, 772427.4304

消费者测试结果输出格式与生产者有所差别,但该脚本也会打印出消费者的吞吐量数据。比如本例中的 1723MB/s。有点令人遗憾的是,它没有计算不同分位数下的分布情况。

把以上结果整理成表格如下:
在这里插入图片描述
简要解析以上结果:数据:5000万,平均吞吐量(TPS):约 77 万条/秒,平均速率:221 MB/s

Kafdrop 服务端监控截图:
在这里插入图片描述
毫无疑问,kafka消费者进度监控的最重要的监控指标为消费者 lag,即所谓滞后程度,就是指消费者当前落后于生产者的程度,比方说,Kafka 生产者向某主题成功生产了 100 万条消息,你的消费者当前消费了 80 万条消息,那么我们就说你的消费者滞后了 20 万条消息,即 Lag 等于 20 万。

目前我们看到 lag 该列所有值都是 0,因为这表明我们的消费者完全没有任何滞后

消息服务器资源监控截图:
在这里插入图片描述
我们可以一个 Broker 的 CPU 使用量约为 33 %,内存使用率为 90%,磁盘写入速率为160 MB/s。

四、小结

好了,今天我们一起梳理了 kafka 2.8.1 版本自带的 BenchMark 测试脚本,我们熟悉了常见的性能测试的工具行命令。希望这些命令在工作做 Kafka 集群BenchMark测试有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1712145.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【更新】一次“问题反馈”,下定决心做了多约束多目标智能算法的“模板”

目录 1 主要内容 2 部分代码 3 程序结果 4 下载链接 1 主要内容 关注该代码的同学应该清楚&#xff0c;这个代码已经免费更新了两版了&#xff0c;修复和增加了一些约束内容&#xff0c;本次增加蓄电池初始时刻和终止时刻容量一致约束&#xff0c;可别小瞧这么简单的增加约…

视频转换器哪个好?这5个转换方法值得一试

#云南真不愧是动植物王国#去云南的宝子&#xff0c;都忍不住想用视频记录云南的美景。但分享时可能会遇到视频格式问题&#xff0c;影响在不同平台和设备上的播放。 不过别担心&#xff0c;现在有很多免费的视频格式转换软件可以解决这些问题。如果你想知道哪个免费的视频转换…

buuctf_RE

[WMCTF2020]easy_re 简单输入flag 但是下断点后&#xff0c;还没走几步就报错退出了。 确实没有打印的字符串 main函数也看不懂在干嘛 int __cdecl main(int argc, const char **argv, const char **envp) {__int64 v4; // r13char v5; // r12__int64 v6; // rax_QWORD *v7;…

控制台生产厂家生产流程详解

控制台生产厂家的生产流程是一个复杂而精细的过程&#xff0c;它涉及多个环节&#xff0c;从原材料的准备到最终产品的出厂检验&#xff0c;每一步都至关重要。以下是控制台生产厂家的一般生产流程&#xff1a; 厂家会根据客户的需求和市场趋势进行产品设计。设计师会综合考虑控…

基于掩码自注意力机制的白内障手术后视力预测的不完整多模态学习

文章目录 Incomplete Multimodal Learning for Visual Acuity Prediction After Cataract Surgery Using Masked Self-Attention摘要方法实验结果 Incomplete Multimodal Learning for Visual Acuity Prediction After Cataract Surgery Using Masked Self-Attention 摘要 论…

3款免费的电脑录屏软件,总有一款适合你!

在当今信息化的时代&#xff0c;电脑录屏软件已经成为了一种不可或缺的工具。无论是录制游戏精彩瞬间&#xff0c;还是制作教学视频&#xff0c;一款好的录屏软件都能让用户事半功倍。然而&#xff0c;许多用户都难以找到一款合适的免费录屏软件。接下来&#xff0c;本文将介绍…

docker-compose报错

前提条件 1、使用docker-compose之前&#xff0c;一定要安装并且运行Docker 2、拉取镜像之前&#xff0c;一定要配置Docker镜像加速&#xff0c;否则下载特别慢 情况1 docker-compose无法打开 错误信息&#xff1a; cannot open self /usr/local/bin/docker-compose or arch…

据库管理-第196期 实战RDMA(20240528)

数据库管理196期 2024-05-28 数据库管理-第196期 实战RDMA&#xff08;20240528&#xff09;1 环境2 操作系统配置3 配置NVMe over RDMA4 挂载磁盘处理并挂载磁盘&#xff1a; 5 RDMA性能测试6 iSCSI部署7 iSCSI性能测试8 性能对比总结 数据库管理-第196期 实战RDMA&#xff08…

jeecgboot 同一账号只允许一个人登录

1.需求分析 jeecgboot 框架要实现同一个账号只允许一个人登录&#xff0c;就跟游戏账号类似&#xff0c;“我登录了就把你踢下去&#xff0c;你登录了就把我踢下去”&#xff1b;jwt 原理是生成 token 后一段时间内登录都有效&#xff0c;jeecgboot 中 jwt 和 redis 联合使用后…

基于YOLOV8/YOLOV5的远距离停车场车位检测识别系统

摘要&#xff1a; 在本文中深入探讨了基于YOLOv8/v7/v6/v5的停车位检测系统&#xff0c; 开发远距离停车位检测系统对于提高停车效率具有关键作用。。本系统核心采用YOLOv8技术&#xff0c;并整合了YOLOv7、YOLOv6、YOLOv5算法&#xff0c;以便进行性能指标对比。深入解释了YOL…

制作Dcoker镜像

文章目录 一、Docker构建镜像的原理1、镜像分层原理2、Docker的镜像结构3、分层存储原理4、构建命令与层的关系5、最终镜像的创建 二、docker commit 构建镜像1、使用场景2、手动制作yum版的nginx镜像2.1、启动一个centos容器&#xff0c;安装好常用的软件以及nginx2.2、关闭ng…

气膜建筑:无硬件支撑的奇迹—轻空间

气膜建筑是一种创新的建筑形式&#xff0c;其独特之处在于其内部没有任何硬件支撑&#xff0c;仅靠空气吹起来。这种技术是如何实现的呢&#xff1f; 气膜结构的原理 气膜建筑的核心在于其充气结构。通过不断向气膜内部充入空气&#xff0c;气膜内部会维持一个较高的气压。这种…

C#根据数据量自动排版标签的样例

这是一个C#根据数据量自动排版标签的样例 using System; using System.Collections.Generic; using System.Data.SqlClient; using System.Drawing; using System.Text; using System.Threading; using System.Threading.Tasks; using System.Windows.Forms; using HslCommuni…

Java基础:基本语法(一)

Java基础&#xff1a;基本语法&#xff08;一&#xff09; 文章目录 Java基础&#xff1a;基本语法&#xff08;一&#xff09;1. 前言2. 开发环境搭建2.1 Java开发工具包下载2.2 环境变量配置2.3 Java程序的运行过程 3. 数据类型3.1 基本数据类型3.2 引用数据类型 4. 常量与变…

深度学习中文笔记.pdf

深度学习和机器学习应该如何入门呢&#xff1f;这是很多初学者经常提的问题&#xff0c;针对这个问题&#xff0c;相信很多过来人都会推荐吴恩达的在线课程。不过&#xff0c;由于是英文版本&#xff0c;就将很多人挡在了门外。 于是&#xff0c;在国内&#xff0c;以黄海广博士…

发现一个可以白嫖GPU的平台

网址 https://platform.virtaicloud.com/gemini_web/auth/register?inviteCodeb0322161368ead7f49716688486796dd 驱动云注册有100点的算力点&#xff0c;目前最便宜的机器大概是0.49算力点每小时&#xff0c;安装个sd或者简单学习训练数据的话&#xff0c;应该能用挺久的。…

K8s 小白入门|从电影配乐谈起,聊聊容器编排和 K8s

来听听音乐 电影&#xff0c;是我们生活中的重要调味剂。 配乐&#xff0c;是电影中不可或缺的一部分。 有的时候&#xff0c;配乐可以跟剧情共振&#xff0c;让你按捺不住自己的情绪&#xff0c;或眼含热泪、或慷慨激昂、或人仰马翻、或怅然若失&#xff1b; 有的时候&…

探索研究大语言在生物识别技术——使用ChatGP-4从完成从人脸识别到年龄估计

0.引言 论文提出以下几要点&#xff1a; &#xff08;1&#xff09;. 人脸识别、性别检测和年龄估计的性能评估&#xff1a; 进行了一项研究&#xff0c;使用GPT-4这样的大型语言模型来处理人脸识别、性别检测和年龄估计等任务。这些任务是生物识别技术中的常见应用&#xff…

深入分析 Android Activity (十)

文章目录 深入分析 Android Activity (十)1. Activity 的资源管理1.1 使用资源 ID 访问资源1.2 Drawable 资源1.3 使用 TypedArray 管理资源1.4 使用资源配置 2. Activity 的数据存储2.1 SharedPreferences2.2 文件存储2.3 SQLite 数据库2.4 ContentProvider 3. Activity 的性能…

生产者延迟消息和重试机制

messageDelayLevel1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h 延迟消息级别public PutMessageResult putMessage(final MessageExtBrokerInner msg) {//事务消息处理if (tranType MessageSysFlag.TRANSACTION_NOT_TYPE|| tranType MessageSysFlag.TRANSACT…