OpenHarmony 实战开发——内核对象队列之算法详解

news2024/11/17 22:39:40

前言

OpenAtom OpenHarmony(以下简称“OpenHarmony”) LiteOS-M 内核是面向 IoT 领域构建的轻量级物联网操作系统内核,具有小体积、低功耗、高性能的特点。在嵌入式领域的开发工作中,无论是自研还是移植系统,均绕不开内核,开发者只有掌握内核的相关知识,才能更好地深耕物联网产品领域。OpenHarmony LiteOS-M内核对象队列的算法包括FIFO和FILO,在上一期发布的《OpenHarmony-内核对象队列之算法详解(上)》文章中,我分享了OpenHarmonyLiteOS-M内核对象队列的FIFO的算法,今天给大家介绍另外一种算法——FILO算法。

关键数据结构

首先关注队列的关键数据结构LosQueueCB,有了这个数据,才能理解队列是如何工作的:

typedef struct {
    UINT8 queue;      /< 消息队列内存区域的指针/
    UINT16 queueState; /*< 消息队列状态 /
    UINT16 queueLen;   /*< 消息队列状态个数 /
    UINT16 queueSize;  /*< 每个消息节点大小 /
    UINT16 queueID;    /*< 消息身份 /
    UINT16 queueHead;  /*< 消息队列的头部/
    UINT16 queueTail;  /*< 消息队列的尾部 /
    UINT16 readWriteableCnt[OS_READWRITE_LEN];  /*< 消息节点循环队列中读或写的消息个数/
    LOS_DL_LIST readWriteList[OS_READWRITE_LEN]; /*< 读或写消息阻塞链表/
    LOS_DL_LIST memList; /*< Pointer to the memory linked list /
  }LosQueueCB;

queue:指向消息节点内存区域,创建队列时按照消息节点个数乘每个节点大小从动态内存池中申请一片空间。

queueState:队列状态,表明队列控制块是否被使用,有OS_QUEUE_INUSED和OS_QUEUE_UNUSED两种状态。

queueLen:消息节点个数,表示该消息队列最大可存储多少个消息。

queueSize:每个消息节点大小,表示队列每个消息可存储信息的大小。

queueID:消息ID,通过它来操作队列。

消息节点按照循环队列的方式访问,队列中的每个节点以数组下标表示,下面的成员与消息节点循环队列有关:

queueHead:循环队列的头部。

queueTail:循环队列的尾部。

readWriteableCnt[OS_QUEUE_WRITE]:消息节点循环队列中可写的消息个数,为0表示循环队列为满,等于queueLen表示循环队列为空。

readWriteableCnt[OS_QUEUE_READ]:消息节点循环队列中可读的消息个数,为0表示循环队列为空,等于queueLen表示消息队列为满。 readWriteList[OS_QUEUE_WRITE]:写消息阻塞链表,链接因消息队列满而无法写入时需要挂起的TASK。

readWriteList[OS_QUEUE_READ]:读消息阻塞链表,链接因消息队列空而无法读取时需要挂起的TASK。

memList:申请内存块阻塞链表,链接因申请某一静态内存池中的内存块失败而需要挂起的TASK。

关键算法

在计算机程序设计中,“先入先出”和“先入后出”都是处理输入数据的方法。上篇文章向大家介绍了FIFO(先入先出)算法,今天给大家讲解FILO(先入后出)算法。一个先入后出(FILO,First In Last Out)的队列,可以形象地理解为手枪的弹匣,装子弹是“入队列”,射击是“出队列”,最先压入弹匣的子弹是最后射出去的。同理,最先入队列的消息也是在最后处理,这就是FILO(先入后出)算法的本质。

1.1FIFO算法之入队列

第一步:队列初始化

下图呈现了一个初始化后的队列:

截取关键函数LOS_QueueCreate,此函数来源于liteos_m内核代码。

LITE_OS_SEC_TEXT_INIT UINT32 LOS_QueueCreate(CHAR *queueName,
                                         UINT16 len,
                                         UINT32 *queueID,
                                         UINT32 flags,
                                         UINT16 maxMsgSize)
{
    LosQueueCB *queueCB = NULL;
    UINT32 intSave;
    LOS_DL_LIST *unusedQueue = NULL;
    UINT8 *queue = NULL;
    UINT16 msgSize;
    ...
    queue = (UINT8 )LOS_MemAlloc(m_aucSysMem0, len  msgSize);
    ...
    queueCB->queueLen = len;
    queueCB->queueSize = msgSize;
    queueCB->queue = queue;
    queueCB->queueState = OS_QUEUE_INUSED;
    queueCB->readWriteableCnt[OS_QUEUE_READ] = 0;
    queueCB->readWriteableCnt[OS_QUEUE_WRITE] = len;
    queueCB->queueHead = 0;
    queueCB->queueTail = 0;
    LOS_ListInit(&queueCB->readWriteList[OS_QUEUE_READ]);
    LOS_ListInit(&queueCB->readWriteList[OS_QUEUE_WRITE]);
    LOS_ListInit(&queueCB->memList);
    LOS_IntRestore(intSave);
 
    *queueID = queueCB->queueID;
 
    OsHookCall(LOS_HOOK_TYPE_QUEUE_CREATE, queueCB);
 
    return

queue指针指向队列的内存,队列分配了len个消息,每个消息的大小为msgSize。与此同时头指针和尾指针的初始化为0,意味着队列为空,还没有消息入队列。

第二步:第一个消息入队列

各类任务可以作为队列的生产者,队列初始化后,任务可以放置第一个消息,在此选择FILO的方式来放置消息。

下图是FIFO插入第一个数据后的内存形态:

FILO的操作包含在OsQueueBufferOperate函数中,这次是进入OS_QUEUE_WRITE_HEAD的分支处理:

static INLINE VOID OsQueueBufferOperate(LosQueueCB *queueCB, UINT32 operateType,
                                                            VOID bufferAddr, UINT32 bufferSize)
{
    UINT8 *queueNode = NULL;
    UINT32 msgDataSize;
    UINT16 queuePosition;
    errno_t rc;
 
    / get the queue position /
    switch (OS_QUEUE_OPERATE_GET(operateType)) {
        case OS_QUEUE_READ_HEAD:
            queuePosition = queueCB->queueHead;
            ((queueCB->queueHead + 1) == queueCB->queueLen) ? (queueCB->queueHead = 0) : (queueCB->queueHead++);
            break;
 
        case OS_QUEUE_WRITE_HEAD:
            (queueCB->queueHead == 0) ? (queueCB->queueHead = (queueCB->queueLen - 1)) : (--queueCB->queueHead);
            queuePosition = queueCB->queueHead;
            break;
 
        case OS_QUEUE_WRITE_TAIL:
            queuePosition = queueCB->queueTail;
            ((queueCB->queueTail + 1) == queueCB->queueLen) ? (queueCB->queueTail = 0) : (queueCB->queueTail++);
            break;
    ...
}

OsQueueBufferOperate是队列内存的核心操作函数,FILO算法的本质是往队列的头部添加数据,入队列的操作抽象为OS_QUEUE_WRITE_HEAD操作。而本次操作和FIFO不一样,插入数据不再移动tail这个“尾巴”指针,后续无论是入队列操作还是出队列操作,tail指针都不会被操作。

第三步:继续生产数据

数据继续生产,第2个消息进入队列后继续移动head指针,如下图所示:

第三个消息也是重复的移动head指针,如下图所示:

第四步:生产数据结束

本次实例以生产者生产四个消息为结束点,最后形态的队列下图所示:

1.2 FIFO算法之出队列

第一步:取出队列头消息。由于这是先入后出的算法,因此第一个出队列的消息是最后入队列的,也就是队列中标注为“第4个”的消息。

消费后的消息空间也是unused空间,在此处用其它颜色标注消费后的消息,便于读者理解队列的变化情况。

回顾一下OsQueueBufferOperate函数的关键代码,这一次是读的分支:

/ get the queue position /
switch (OS_QUEUE_OPERATE_GET(operateType)) {
    case OS_QUEUE_READ_HEAD:
        queuePosition = queueCB->queueHead;
        ((queueCB->queueHead + 1) == queueCB->queueLen) ? (queueCB->queueHead = 0) : (queueCB->queueHead++);
        break;

queueHead是头指针,它的移动代表着出队列的行为,queueHead目前指向“第4个”消息,往后移动一个,应用得到“第4个”消息的返回值。此处可见,最后入队列的消息最先出。

第二步:继续消费

第三个消息被消费的图示:

第二个消息被消费的图示:

第三步:消费完毕

最后一个消息也处理完成,于是head指针和tail指针均移动到下图的位置。队列为空,任务结束。

这时如果把图重新换个方向来看,那么就很容易了解这个算法的本质。Tail指针全程没有用到,如果把它去掉,水平方向的队列改为垂直方向。如下图所示,可见该图片为典型的入栈操作。由此可知,OpenHarmony内核通过头指针的写操作和读操作,把栈的操作兼容到队列中。

总结

本文主要介绍了OpenHarmony内核对象队列的算法之FILO,至此,队列的2个算法都已介绍完毕。通过对FIFO和FILO这2个算法的详解,开发者能够更加全面了解OpenHarmony LiteOS-M 内核队列算法,以便将来在内核开发工作中遇到队列的其他算法,也能够举一反三,迅速掌握。

为了帮助到大家能够更有效的学习OpenHarmony 开发的内容,下面特别准备了一些相关的参考学习资料:

OpenHarmony 开发环境搭建:https://qr18.cn/CgxrRy

《OpenHarmony源码解析》:https://qr18.cn/CgxrRy

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……

系统架构分析:https://qr18.cn/CgxrRy

  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

OpenHarmony 设备开发学习手册:https://qr18.cn/CgxrRy

在这里插入图片描述

OpenHarmony面试题(内含参考答案):https://qr18.cn/CgxrRy

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1708266.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IT行业现状与未来趋势简单分析

你眼中的IT行业现状与未来趋势 随着技术的不断进步&#xff0c;IT行业已成为推动全球经济和社会发展的关键力量。从云计算、大数据、人工智能到物联网、5G通信和区块链&#xff0c;这些技术正在重塑我们的生活和工作方式。你眼中IT行业的现状及未来发展趋势是怎么样的&#xf…

AI视频教程下载:使用ChatGPT进行商务写作

你将学到什么&#xff1f; 学习如何将ChatGPT集成到你的写作过程中&#xff0c;并有效地将其用作商务写作的个人写作助手。 学习如何使用ChatGPT生成想法&#xff0c;提高你的书面沟通的结构、清晰度和连贯性。 你将学习使用ChatGPT的最佳实践&#xff0c;包括如何自定义其设…

【Unity程序】Unity游戏开发中常用的设计模式【一】

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…

堆溢出bug定位调试修复

最近代码出了bug&#xff0c;堆溢出。 debug下一切正常&#xff0c; release时随机崩溃到某几个地方&#xff0c; 报错是: Critical error detected c0000374 不是完全随机崩溃&#xff0c;崩溃到某几个正常的地方&#xff0c;开始怀疑是不是这几个地方真的有什么bug, 由于使…

极致产品力|从toB到toC,年销4.2亿份的冻干品牌是如何炼成的?

天野食品是日本冻干食品长红40年的品牌&#xff0c;从制造焦糖的小工厂&#xff0c;转变为日本冻干速食的行业第一&#xff0c;它是如何做到的呢? 深耕TOB业务&#xff0c;如何在ToC业务创造增长 天野公司以冻干食品闻名但并非以此起家。自1940年成立以来&#xff0c;便以染料…

智慧冶金:TSINGSEE青犀AI+视频技术助力打造高效、安全的生产环境

一、建设背景 冶金行业因其特殊的生产环境和工艺要求&#xff0c;对安全生产、环境保护以及质量监控等方面有着极高的要求。因此&#xff0c;将视频智能监控技术引入冶金行业&#xff0c;不仅有助于提升生产效率&#xff0c;更能有效保障生产安全&#xff0c;降低事故风险。 …

5.28 学习总结

一.CSS学习(一) 一、CSS简介 1、什么是CSS CSS&#xff1a;Cascading Style Sheet 层叠样式表是一组样式设置的规则&#xff0c;用于控制页面的外观样式 2、为什么使用CSS 实现内容与样式的分离&#xff0c;便于团队开发样式复用&#xff0c;便于网站的后期维护页面的精确…

跨境卖家必看!亚马逊商品3D建模怎么实现?

亚马逊引领3D内容革命&#xff0c;助力卖家提升商品展现力 亚马逊于2023年12月发布了一项重大公告&#xff0c;正式宣布&#xff1a;“平台将不再接受将360图像上传至产品详细页面的请求&#xff0c;而是全面采用3D模型来替代。”这一决策无疑预示着3D内容将在亚马逊平台上迎来…

区间类贪心,蓝桥云课 打折

目录 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 二、解题报告 1、思路分析 2、复杂度 3、代码详解 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 0打折 - 蓝桥云课 (lanqiao.cn) 二、解题报告 1、思路分析 思路很简单&am…

Kubernetes(k8s) 实战集群部署Discuz x3.5 k8s使用本地私有仓库镜像 Centos 8.5 安装部署NFS

本文环境可参考: 详细教程 Centos8.5 基于 k8s v1.30.1 部署高可用集群 kubeadm 安装 kubernetes v1.30.1 docker集群搭建 延长证书有效期-CSDN博客 1 集群部署&#xff0c;需要PV&#xff0c;安装NFS #master11,slave12,slave13都安装 yum install nfs-utils rpcbind -y2 …

httphere是一个反向代理和友好前端开发的小工具

httphere 是干什么的 httphere在任意目录启动 http服务, 不仅仅是启动一个简单的http服务。 只启动http服务&#xff0c;现成的做法有&#xff1a; python2 -m SimpleHTTPServer python3 -m http.server 其他 httphere 工具httphere功能有&#xff1a;静态服器、文件上传与下…

IDEA社区版创建并运行maven管理的web项目的基本流程

一、前言 注意&#xff0c;这是社区版&#xff0c;旗舰版可以绕路。 二、过程 1、下载安装社区版 2、安装jdk&#xff0c;tomcat&#xff0c;maven 3、创建并启动项目 注意选择的骨架是maven-archetype-webapp&#xff0c;然后next&#xff0c;设置项目名&#xff0c;存放…

vivado设置Vscode为默认编辑器

D:\vscode\Microsoft VS Code\Code.exe -g [file name]:[line number]

机器学习知识与心得

目录 机器学习实践 机器学习基础理论和概念 机器学习基本方法 1.线性回归&#xff08;回归算法&#xff09; 训练集&#xff08;Training Set&#xff09; 测试集&#xff08;Test Set&#xff09; 交叉验证 正则化 特点 2.logistic回归&#xff08;分类算法&#xf…

【面试八股总结】索引(二):B+树数据结构、索引使用场景、索引优化、索引失效

参考资料&#xff1a;小林coding、阿秀 一、为什么InnoDB采用B树作为索引数据结构&#xff1f; B 树是一个自平衡多路搜索树&#xff0c;每一个节点最多可以包括 M 个子节点&#xff0c;M 称为 B 树的阶&#xff0c;所以 B 树就是一个多叉树。 B 树与 B 树的差异&#xff1a;…

数据分析必备:一步步教你如何用Pandas做数据分析(10)

1、Pandas 文本处理 Pandas 文本处理操作实例 在本章中&#xff0c;我们将使用基本的Series / Index讨论字符串操作。在随后的章节中&#xff0c;我们将学习如何在DataFrame上应用这些字符串函数。 Pandas提供了一组字符串函数&#xff0c;可以轻松地对字符串数据进行操作。最…

海信集团携纷享销客启动LTC数字化落地 推动ToB业务再升级

日前&#xff0c;海信集团携手连接型CRM纷享销客正式启动LTC&#xff08;Leads to Cash&#xff09;数字化平台实施落地项目。作为海信集团数字化的重要里程碑&#xff0c;该项目将通过统一规划、统一投资、统一平台、资源共享和数据赋能&#xff0c;构建ToB业务数字化经营管理…

System32文件夹千万不能删除,看完这篇你就知道为什么了

序言 C:\Windows\System32目录是Windows操作系统的关键部分,重要的系统文件存储在该目录中。网上的一些恶作剧者可能会告诉你删除它,但你不应该尝试去操作,如果你尝试的话,我们会告诉你会发生什么。 什么是System32文件夹 位于C:\Windows\System32的System32文件夹是所有…

【高阶数据结构】 B树 -- 详解

一、常见的搜索结构 适合做内查找&#xff1a; 以上结构适合用于数据量相对不是很大&#xff0c;能够一次性存放在内存中&#xff0c;进行数据查找的场景。如果数据量很大&#xff0c;比如有 100G 数据&#xff0c;无法一次放进内存中&#xff0c;那就只能放在磁盘上了。 如果…

【C++】数据结构:哈希桶

哈希桶&#xff08;Hash Bucket&#xff09;是哈希表&#xff08;Hash Table&#xff09;实现中的一种数据结构&#xff0c;用于解决哈希冲突问题。哈希表是一种非常高效的数据结构&#xff0c;它通过一个特定的函数&#xff08;哈希函数&#xff09;将输入数据&#xff08;通常…