计算机毕业设计hadoop+spark+hive知识图谱音乐推荐系统 音乐数据分析可视化大屏 音乐爬虫 LSTM情感分析 大数据毕设 深度学习 机器学习

news2025/1/24 2:23:18

青岛理工大学(临沂)机械与电子工程系

毕业设计外文翻译

独立于语言的个性化音乐

推荐系统

Personalized Language-Independent Music Recommendation System

设计题目:基于python的音乐推荐系统的分析可视化设计                            

专业班级:       与技术21级3班         

学生姓名:               纪光辉        

学生学号:            202113160638   

指导教师:               刘庆海          

完成日期:          2023年3月17日                

独立于语言的个性化音乐推荐系统拉迪卡·N

计算机科学系研究生学者

工程专业

战国策工程学院

帕拉卡德,喀拉拉邦

电子邮件:XXXXXXX

赛亚姆·桑卡尔

计算机科学系助理教授

工程专业

战国策工程学院

帕拉卡德, 喀拉拉邦

电子邮件: syam.sankar8@gmail.com

摘要 — 社交媒体是用户展示的地方 他们自己并分享所有类型的信息、想法和 与世界的经验。近年来,情绪分析已经 被多家互联网服务探索推荐内容 根据人类的情感,通过社交网络。社交网络上的许多用户在写句子 多种语言。本文介绍与语言无关 音乐推荐系统中的情感分析。这个系统 根据当前的情绪向用户推荐音乐那个人的状态。其中当前情绪状态通过测量调整后的情绪强度来计算人 值,它是情绪强度值与 修正系数。此校正系数基于用户配置文件信息,并用于调整最终情绪强度值。

传统分类器是特定于语言的,需要很多 工作应用于不同的语言。建议的系统使用 语言的监督情绪分类方法 独立情绪强度计算。我们训练朴素湾 对我们的数据进行分类,并在2中的1000多个帖子上对其进行评估语言,英语和马拉雅拉姆语。

受监督的情绪具有校正因子的分类器可以提高性能拟议的语言独立音乐推荐系统。

关键词 — 社交网络,情绪分析,更正因素,建议

一、引言

互联网改变了我们的生活。如今很常见 让人们通过以下方式表达他们的情绪和意见 社交网络和微博。社交媒体使我们能够把世界掌握在我们手中。推特是最大的推特之一 互联网上的微博服务[8]。微博是 人们用来分享各种短信的短信 信息与世界。在推特上,这些微博是被称为“推

文”,其中超过4亿条被发布日。在这种情况下,关于情绪强度的研究有 开始出现。情感分析是一种自然语言技术 处理和文本分析,可应用于许多 推荐系统。了解情绪强度 一句话可以帮助更多地了解一个人表达自己对事件、产品或内容的看法。然而,它在推荐系统中的使用仍然是一个

挑战,因为人们用不同的方式表达自己的感受方式,这使得很难创建可靠的基于情绪分析的建议[2]。

 在这里,情绪分析开始被探索

推荐特定歌曲的音乐推荐系统取决于人当前的情绪状态,因为歌曲完全与当下的情绪和感受有关这个人。人目前的情绪状态是通过收集用户在社交网络上的帖子来计算。

 人们在一天中的某些时间使用社交网络了解他们的行为和习惯可能有助于几种应用[8],[9]。因此,记录很重要。

所有这些数据都在日志中。通过实现日志,可以为定制时期开发推荐系统的时间。例如,一个人通常阅读财经新闻周一和周四上午 8 点至上午 9 点,倾向于阅读周日娱乐新闻。

 有大量的研究有待发现从文本数据中自动提取情绪的方法。最研究仅在一种语言的推文上进行。然而,Twitter是一个国际流行的社交网络服务和大部分推文都是多种语言的。

因此,仅分析一种语言的推文仅涵盖可用内容的一部分。 分类方法不限于只分析一种语言,就能收集很多东西来自多个推文的更多情绪信息语言。在本文中,我们研究了语言独立性情绪分类方法。我们训练分类器来标记推文的情绪极性,对于这个阶段需要原始用于训练分类器的该语言的推文。

我们在两个不同的推文上训练分类器语言:英语和马拉雅拉姆语。出于我们收集的目的以这两种语言发送的数千条人工注释的推文并假设任何一条推文只包含一种情绪一时间。要个性化此推荐系统,请正确使用因子,此校正因子完全取决于用户的个人资料信息。

本文对工作的贡献程度[1],它提出了个人语言独立音乐推荐使用基于语料库的情感分析的系统,具有 基于用户个人资料信息的校正系数。

核心算法代码分享如下:

from flask import Flask, render_template, request, redirect, url_for
import json
from flask_mysqldb import MySQL
from flask import Flask, send_from_directory,render_template, request, redirect, url_for, jsonify
import csv
import os
import pymysql
# 创建应用对象
app = Flask(__name__)
app.config['MYSQL_HOST'] = 'bigdata'
app.config['MYSQL_USER'] = 'root'
app.config['MYSQL_PASSWORD'] = '123456'
app.config['MYSQL_DB'] = 'hive_chinawutong'
mysql = MySQL(app)  # this is the instantiation


@app.route('/tables01')
def tables01():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT replace(REPLACE(REPLACE(from_province, '区', ''), '省', ''),'市','') from_province,num FROM table01''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['from_province','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables02')
def tables02():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT pub_time,num,LENGTH(pub_time) len_time FROM table02 ORDER BY len_time desc  ''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['pub_time','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables03')
def tables03():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table03 order by rztime asc''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['rztime','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables04')
def tables04():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table04''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['yslx','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route("/getmapcountryshowdata")
def getmapcountryshowdata():
    filepath = r"D:\\wuliu_hadoop_spark_spider2025\\echarts\\data\\maps\\china.json"
    with open(filepath, "r", encoding='utf-8') as f:
        data = json.load(f)
        return json.dumps(data, ensure_ascii=False)


@app.route('/tables05')
def tables05():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table05 order by num asc''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['hwlx','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables06')
def tables06():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table06''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['weight_union','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables07')
def tables07():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table07 order by  num asc''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['recieve_province','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables08')
def tables08():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table08''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['end_time','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables09')
def tables09():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table09''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['wlmc','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)


@app.route('/data',methods=['GET'])
def data():
    limit = int(request.args['limit'])
    page = int(request.args['page'])
    page = (page-1)*limit
    conn = pymysql.connect(host='bigdata', user='root', password='123456', port=3306, db='hive_chinawutong',
                           charset='utf8mb4')

    cursor = conn.cursor()
    if (len(request.args) == 2):
        cursor.execute("select count(*) from ods_chinawutong");
        count = cursor.fetchall()
        cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
        cursor.execute("select * from ods_chinawutong limit "+str(page)+","+str(limit));
        data_dict = []
        result = cursor.fetchall()
        for field in result:
            data_dict.append(field)
    else:
        weight_union = str(request.args['weight_union'])
        wlmc = str(request.args['wlmc']).lower()
        if(weight_union=='不限'):
            cursor.execute("select count(*) from ods_chinawutong where wlmc like '%"+wlmc+"%'");
            count = cursor.fetchall()
            cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
            cursor.execute("select * from ods_chinawutong where wlmc like '%"+wlmc+"%' limit " + str(page) + "," + str(limit));
            data_dict = []
            result = cursor.fetchall()
            for field in result:
                data_dict.append(field)
        else:
            cursor.execute("select count(*) from ods_chinawutong where wlmc like '%"+wlmc+"%' and weight_union like '%"+weight_union+"%'");
            count = cursor.fetchall()
            cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
            cursor.execute("select * from ods_chinawutong where wlmc like '%"+wlmc+"%' and weight_union like '%"+weight_union+"%' limit " + str(page) + "," + str(limit));
            data_dict = []
            result = cursor.fetchall()
            for field in result:
                data_dict.append(field)
    table_result = {"code": 0, "msg": None, "count": count[0], "data": data_dict}
    cursor.close()
    conn.close()
    return jsonify(table_result)


if __name__ == "__main__":
    app.run(debug=False)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1704999.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何连接远程?

在现代信息技术的发展过程中,不同地区之间的远程连接变得日益重要。为了满足不同地区的电脑、设备之间的信息远程通信需求,北京金万维科技有限公司自主研发的【天联】组网产品应运而生。【天联】是一款异地组网内网穿透产品,可以在任何网络环…

C语言 数组——排序算法的函数实现

目录 交换法排序 用交换法对成绩数组升序排序 选择法排序 冒泡法排序 归并法排序 交换法排序 用交换法对成绩数组升序排序 选择法排序 冒泡法排序 归并法排序

数据结构(四)双向链表

文章目录 一、概念二、无头双向链表示意图三、操作(一)定义结构体(二)创建链表1. 函数定义2. 注意点3. 代码实现 (三)插入1. 函数定义2. 注意点3. 代码实现 (四)删除1. 函数定义2. 注…

【Python】 如何在Python中设置环境变量?

基本原理 在Python中,环境变量是一种存储系统或应用程序配置信息的方式,它们可以被操作系统或应用程序访问。环境变量通常用于配置应用程序的行为,例如指定数据库的连接字符串、API密钥、文件路径等。 Python提供了几种方法来设置和访问环境…

最后两天!百度云加速正式停服

百度云加速将于5月30日,正式关闭服务器,仅保留官网首页通知。 届时如网站还在百度云加速接入的,将无法正常访问! 如果您还有域名在百度云加速接入的请尽快做迁移安排,以免造成损失。 目前在主机吧购买的域名已经全部…

Flink本地idea运行环境配置webui

Flink本地idea运行环境配置webui 1.添加依赖 <dependency><groupId>org.apache.flink</groupId><artifactId>flink-runtime-web_2.11</artifactId><version>1.13.6</version><scope>provided</scope></dependency&g…

柳宗元,政治坎坷与文学辉煌的交织

&#x1f4a1; 如果想阅读最新的文章&#xff0c;或者有技术问题需要交流和沟通&#xff0c;可搜索并关注微信公众号“希望睿智”。 柳宗元&#xff0c;字子厚&#xff0c;生于唐代宗大历年间&#xff08;公元773年&#xff09;&#xff0c;卒于唐宪宗元和年间&#xff08;公元…

产品公告 | MemFire Cloud认证服务支持微信扫码登录

前言 为了满足国内用户日益增长的操作习惯需求&#xff0c;并进一步提升用户体验&#xff0c;MemFire Cloud认证服务已集成微信扫码登录功能。微信&#xff0c;作为国内广受欢迎的社交平台&#xff0c;其扫码登录功能以其便捷性和快速性赢得了广大用户的青睐。现在&#xff0c…

了不起的学习生产板OrangePiAiPro

一. OrangePi AiPro介绍和初始化配置 介绍 香橙派 orangePiAIpro这个板子其实早在一年前就已经有了大面积推广且应用于各种真实的智能场景中了&#xff0c;比如图像识别&#xff0c;大文本语义解析&#xff0c;语音识别等&#xff0c;今日我也终于下手啦。 因为本人本科是一个嵌…

【C++练级之路】【Lv.22】C++11——右值引用和移动语义

快乐的流畅&#xff1a;个人主页 个人专栏&#xff1a;《算法神殿》《数据结构世界》《进击的C》 远方有一堆篝火&#xff0c;在为久候之人燃烧&#xff01; 文章目录 引言一、右值引用1.1 左值和右值1.2 左值引用和右值引用的范围1.3 左值引用的意义 二、移动语义2.1 移动构造…

感觉是通俗易懂的大模型入门(一)

最近人工智能非常火爆,大家可能经常听到AI、深度学习、大语言模型等名词。但真正能够将它们拆开来细致讲解的内容并不多。我大学就是学这个的,毕业后一直从事这个领域的工作。所以我打算今年陆续做一些这方面的科普,也借此机会复习巩固一下自己的知识体系。 今天就算是第一期,…

C语言之指针详解(5)(含有易错笔试题)

文章目录 一、sizeof和strlen的对比1.1 sizeof1.2 strlen1.3 sizeof 和 strlen 的对比 二、数组和指针笔试题2.1 一维数组2.2 字符数组2.3 二维数组 三、指针运算笔试题3.1 题目13.2 题目23.3 题目33.4 题目43.5 题目53.6 题目63.7 题目7 一、sizeof和strlen的对比 有一个很神…

操作系统 - 输入/输出(I/O)管理

输入/输出(I/O)管理 考纲内容 I/O管理基础 设备&#xff1a;设备的基本概念&#xff0c;设备的分类&#xff0c;I/O接口 I/O控制方式&#xff1a;轮询方式&#xff0c;中断方式&#xff0c;DMA方式 I/O软件层次结构&#xff1a;中断处理程序&#xff0c;驱动程序&#xff0c;…

汇编:比较跳转

在16位汇编语言&#xff08;如x86汇编&#xff09;中&#xff0c;比较指令用于比较两个操作数的大小&#xff0c;通常用于条件跳转、循环控制等逻辑操作&#xff0c;比较指令&#xff08;如CMP&#xff09;会根据操作数的比较结果设置标志寄存器中的相关标志位 比较指令影响的…

KAN(Kolmogorov-Arnold Network)的理解 2

系列文章目录 第一部分 KAN的理解——数学背景 第二部分 KAN的理解——网络结构 文章目录 系列文章目录前言KAN网络结构&#xff1a;Kolmogorov-Arnold Network 前言 这里记录我对于KAN的探索过程&#xff0c;每次会尝试理解解释一部分问题。欢迎大家和我一起讨论。 KAN tuto…

Spring Boot集成六大常用中间件,附集成源码,亲测有效

目录 万字论文&#xff0c;从0到1&#xff0c;只需1小时获取途径1、Spring Boot如何集成Spring Data JPA&#xff1f;2、Spring Boot如何集成Spring Security&#xff1f;3、Spring Boot如何集成Redis&#xff1f;4、Spring Boot如何集成RabbitMQ&#xff1f;5、Spring Boot如何…

Dream

好像很多人梦寐以求的都是别人已经拥有的&#xff0c;多少人奋斗一生的目标&#xff0c;却只是别人的起点&#xff0c;人生而自由&#xff0c;只是不在枷锁之中&#xff0c;生活中没有人不遗憾&#xff0c;只是没有人喊疼&#xff0c;时间不会重来&#xff0c;已经过去了就让它…

day16--集合进阶(Set、Map集合)

day16——集合进阶&#xff08;Set、Map集合&#xff09; 一、Set系列集合 1.1 认识Set集合的特点 Set集合是属于Collection体系下的另一个分支&#xff0c;它的特点如下图所示 下面我们用代码简单演示一下&#xff0c;每一种Set集合的特点。 //Set<Integer> set ne…

软考 系统架构设计师系列知识点之SOME/IP与DDS(3)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之SOME/IP与DDS&#xff08;2&#xff09; 本文内容参考&#xff1a; 车载以太网 - SOME/IP简介_someip-CSDN博客 https://zhuanlan.zhihu.com/p/369422441 什么是SOME/IP?_someip-CSDN博客 SOME/IP 详解系列&#…

AS加密技术的实战应用与解析

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、AS加密技术简介 二、AS加密技术的实现过程 1. 生成公钥和私钥 2. 使用公钥加密数据 …