前言
业务上线后经常报查询超时,数据库使用的是阿里云的RDS,mysql版本是
5.6.16-log
,有几条统计数据的查询语句执行很慢,有的甚至执行一次需要10多秒,简直无法忍受。
查看了超时时间,默认为0
show variables like '%MAX_STATEMENT_TIME%'
show variables like '%MAX_EXECUTION_TIME%'
# 网上说这个参数只针对5.7以上的版本生效
SET GLOBAL MAX_EXECUTION_TIME=30000;
# 对5.6版本生效
SET GLOBAL MAX_STATEMENT_TIME=30000;
然后在
select
后面 加上/*+ max_statement_time(1000) */
。
设置后也没有效果,然后在阿里云上面手动修改对应的参数,也没用。
最后在阿里云上面看到几条优化建议,参考阿里云的建议,查询速度明显提升,这里也记录一下。
例1
表里面有810w+的数据
- 首先,就是建立正确的索引。
多创建了两个联合索引,第一个是之前创建的,虽然能命中,但不是最佳。
ALTER TABLE `user_event_record` ADD INDEX `idx_event_gmtcreate_userid` (`event`, `gmt_create`, `user_id`)
ALTER TABLE `user_event_record` ADD INDEX `idx_gmtcreate_event` (`gmt_create`, `event`)
2. 修改时间查询条件
- 原sql
SELECT
LEFT (f.gmt_create, 10 ) `date`,
f.event,
COUNT(1) total
FROM user_event_record f
WHERE
date_format(f.gmt_create, '%y%m%d') >= date_format('2023-01-14', '%y%m%d')
GROUP BY `date`, f.event;
- 修改后的sql
SELECT
LEFT (f.gmt_create, 10) `date`,
f.event,
COUNT(1) total
FROM user_event_record f
WHERE
f.gmt_create > DATE('2023-01-14')
GROUP BY `date`, f.event;
查询速度对比
-
原sql执行时间
-
修改后的sql执行时间
直接提升了7-8倍,查询结果一致,效果提升还是很明显的。
例2
同一个表
原SQL
SELECT
DATE_FORMAT(gmt_create, '%m-%d') AS `time`,
COUNT(DISTINCT CASE WHEN event = 'enterSystemFail' OR event = 'enterSystemSuc' THEN user_id END) AS total,
COUNT(DISTINCT CASE WHEN event = 'enterSystemSuc' THEN user_id END) AS success,
COUNT(DISTINCT CASE WHEN event = 'enterSystemFail' THEN user_id END) AS fail,
COUNT(DISTINCT CASE WHEN app = '1.0.7' and (event = 'enterSystemFail' OR event = 'enterSystemSuc') THEN user_id END) AS oldCount,
COUNT(DISTINCT CASE WHEN event = 'enterSystemSuc' AND app = '1.0.7' THEN user_id END) AS oldSuccess,
COUNT(DISTINCT CASE WHEN event = 'enterSystemFail' AND app = '1.0.7' THEN user_id END) AS oldFail,
COUNT(DISTINCT CASE WHEN app = '1.0.8' and (event = 'enterSystemFail' OR event = 'enterSystemSuc') THEN user_id END) AS newCount,
COUNT(DISTINCT CASE WHEN event = 'enterSystemSuc' AND app = '1.0.8' THEN user_id END) AS newSuccess,
COUNT(DISTINCT CASE WHEN event = 'enterSystemFail' AND app = '1.0.8' THEN user_id END) AS newFail
FROM user_event_record
WHERE DATE_FORMAT(gmt_create, '%Y-%m-%d') > DATE_SUB(CURDATE(), INTERVAL 10 DAY)
GROUP BY DATE_FORMAT(gmt_create, '%m-%d')
修改后的sql
SELECT
DATE_FORMAT(gmt_create, '%m-%d') AS `time`,
COUNT(DISTINCT CASE WHEN event = 'enterSystemFail' OR event = 'enterSystemSuc' THEN user_id END) AS total,
COUNT(DISTINCT CASE WHEN event = 'enterSystemSuc' THEN user_id END) AS success,
COUNT(DISTINCT CASE WHEN event = 'enterSystemFail' THEN user_id END) AS fail,
COUNT(DISTINCT CASE WHEN app = '1.0.7' and (event = 'enterSystemFail' OR event = 'enterSystemSuc') THEN user_id END) AS oldCount,
COUNT(DISTINCT CASE WHEN event = 'enterSystemSuc' AND app = '1.0.7' THEN user_id END) AS oldSuccess,
COUNT(DISTINCT CASE WHEN event = 'enterSystemFail' AND app = '1.0.7' THEN user_id END) AS oldFail,
COUNT(DISTINCT CASE WHEN app = '1.0.8' and (event = 'enterSystemFail' OR event = 'enterSystemSuc') THEN user_id END) AS newCount,
COUNT(DISTINCT CASE WHEN event = 'enterSystemSuc' AND app = '1.0.8' THEN user_id END) AS newSuccess,
COUNT(DISTINCT CASE WHEN event = 'enterSystemFail' AND app = '1.0.8' THEN user_id END) AS newFail
FROM user_event_record
WHERE gmt_create > DATE_SUB(CURDATE(), INTERVAL 9 DAY)
GROUP BY DATE_FORMAT(gmt_create, '%m-%d')
查询速度对比
- 原sql执行时间
- 修改后的sql执行时间
从28秒提升到3秒,提升了8-9倍
例3
表数据530w+
创建了联合索引
ALTER TABLE `file_record_info` ADD INDEX `idx_mark_gmtcreate_userid` (`mark`, `gmt_create`, `user_id`)
- 原sql
SELECT
'2023-01-12' AS `date`,
COUNT(DISTINCT CASE WHEN `mark` = '10000' THEN `user_id` ELSE NULL END) AS `upgradeFailCount`,
COUNT(DISTINCT CASE WHEN `mark` = '10001' THEN `user_id` ELSE NULL END) AS `enterSysFailCount`,
COUNT(DISTINCT CASE WHEN `mark` = '10008' THEN `user_id` ELSE NULL END) AS `dllLoadFailCount`,
COUNT(DISTINCT CASE WHEN `mark` = '10009' THEN `user_id` ELSE NULL END) AS `enableDeviceFailCount`
FROM file_record_info
WHERE
mark IN ('10000', '10001', '10008', '10009' )
AND DATE_FORMAT(gmt_create, '%Y-%m-%d') = '2023-01-12';
- 修改后的sql
SELECT
'2023-01-12' AS `date`,
COUNT(DISTINCT CASE WHEN mark = '10000' THEN user_id END) AS upgradeFailCount,
COUNT(DISTINCT CASE WHEN mark = '10001' THEN user_id END) AS enterSysFailCount,
COUNT(DISTINCT CASE WHEN mark = '10008' THEN user_id END) AS dllLoadFailCount,
COUNT(DISTINCT CASE WHEN mark = '10009' THEN user_id END) AS enableDeviceFailCount
FROM file_record_info WHERE mark IN ( '10000', '10001', '10008', '10009' )
AND (`gmt_create` >= DATE('2023-01-12') AND `gmt_create` < DATE_ADD(DATE('2023-01-12'), INTERVAL 1 DAY));
查询速度对比
- 原sql执行时间
- 修改后的sql执行时间
提升约30倍
例4
同样的例子
SELECT
/*+ MAX_EXECUTION_TIME(20000) */
'2023-01-15' AS `date`,
COUNT( DISTINCT CASE WHEN `event` = 'enterOBDSystemFail' OR `event` = 'enterOBDSystemSuc' THEN user_id END ) AS total,
COUNT( DISTINCT CASE WHEN `event` = 'enterOBDSystemSuc' THEN user_id END ) AS success,
COUNT( DISTINCT CASE WHEN `event` = 'enterOBDSystemFail' THEN user_id END ) AS fail
FROM user_event_record
WHERE
`event` IN ( 'enterOBDSystemFail', 'enterOBDSystemSuc' )
AND DATE_FORMAT( gmt_create, '%Y-%m-%d' ) = '2023-01-15';
- 修改后的sql
SELECT
'2023-01-15' AS `date`,
COUNT( DISTINCT CASE WHEN `event` = 'enterOBDSystemFail' OR `event` = 'enterOBDSystemSuc' THEN `user_id` ELSE NULL END ) AS `total`,
COUNT( DISTINCT CASE WHEN `event` = 'enterOBDSystemSuc' THEN `user_id` ELSE NULL END ) AS `success`,
COUNT( DISTINCT CASE WHEN `event` = 'enterOBDSystemFail' THEN `user_id` ELSE NULL END ) AS `fail`
FROM `user_event_record`
WHERE
`event` IN ( 'enterOBDSystemFail', 'enterOBDSystemSuc' )
AND `gmt_create` >= DATE( '2023-01-15' )
AND `gmt_create` < DATE_ADD( DATE( '2023-01-15' ), INTERVAL 1 DAY );
查询速度对比
- 原sql执行时间
- 修改后的sql执行时间
提升约40倍
例5
- 原sql
SELECT
IFNULL( DATE_FORMAT( gmt_create, '%Y-%m-%d' ), '2022-12-01' ) `date`,
COUNT( DISTINCT CASE WHEN mark = '10000' THEN user_id END ) AS upgradeFailCount,
COUNT( DISTINCT CASE WHEN mark = '10001' THEN user_id END ) AS enterSysFailCount,
COUNT( DISTINCT CASE WHEN mark = '10008' THEN user_id END ) AS dllLoadFailCount,
COUNT( DISTINCT CASE WHEN mark = '10009' THEN user_id END ) AS enableDeviceFailCount
FROM file_record_info
WHERE
mark IN ('10000', '10001', '10008', '10009')
AND DATE_FORMAT(gmt_create, '%Y-%m-%d')>='2022-12-01'
GROUP BY `date`
- 修改后的sql
SELECT
IFNULL( DATE_FORMAT( gmt_create, '%Y-%m-%d' ), '2022-12-01' ) `date`,
COUNT( DISTINCT CASE WHEN mark = '10000' THEN user_id END ) AS upgradeFailCount,
COUNT( DISTINCT CASE WHEN mark = '10001' THEN user_id END ) AS enterSysFailCount,
COUNT( DISTINCT CASE WHEN mark = '10008' THEN user_id END ) AS dllLoadFailCount,
COUNT( DISTINCT CASE WHEN mark = '10009' THEN user_id END ) AS enableDeviceFailCount
FROM file_record_info
WHERE
mark IN ('10000', '10001', '10008', '10009')
AND gmt_create > DATE('2022-12-01')
GROUP BY `date`
查询速度对比
- 原sql执行时间
- 修改后的sql执行时间
有所提升。
总结
- 首先索引一定要根据业务来创建,不然没办法命中,可以通过
EXPLAIN
关键字来分析。 - 尽量避免
DATE_FORMAT
函数