C++设计模式(3)——抽象工厂模式

news2024/11/23 16:45:47

抽象工厂模式

亦称: Abstract Factory

意图

抽象工厂模式是一种创建型设计模式, 它能创建一系列相关的对象, 而无需指定其具体类。
在这里插入图片描述

问题

假设你正在开发一款家具商店模拟器。 你的代码中包括一些类, 用于表示:

1、一系列相关产品, 例如 椅子Chair 、 ​ 沙发Sofa咖啡桌Coffee­Table

2、系列产品的不同变体。 例如, 你可以使用 现代Modern 、 ​ 维多利亚Victorian 、 ​ 装饰风艺术Art­Deco等风格生成 椅子 、 ​ 沙发和 咖啡桌
在这里插入图片描述
系列产品及其不同变体。
你需要设法单独生成每件家具对象, 这样才能确保其风格一致。 如果顾客收到的家具风格不一样, 他们可不会开心。
在这里插入图片描述
现代风格的沙发和维多利亚风格的椅子不搭。
此外, 你也不希望在添加新产品或新风格时修改已有代码。 家具供应商对于产品目录的更新非常频繁, 你不会想在每次更新时都去修改核心代码的。

解决方案

首先, 抽象工厂模式建议为系列中的每件产品明确声明接口 (例如椅子、 沙发或咖啡桌)。 然后, 确保所有产品变体都继承这些接口。 例如, 所有风格的椅子都实现 椅子接口; 所有风格的咖啡桌都实现 咖啡桌接口, 以此类推。
在这里插入图片描述
同一对象的所有变体都必须放置在同一个类层次结构之中。

接下来, 我们需要声明抽象工厂——包含系列中所有产品构造方法的接口。 例如 create­Chair创建椅子 、 ​ create­Sofa创建沙发和 create­Coffee­Table创建咖啡桌 。 这些方法必须返回抽象产品类型, 即我们之前抽取的那些接口: ​ 椅子 , ​ 沙发和 咖啡桌等等。
在这里插入图片描述
每个具体工厂类都对应一个特定的产品变体。

那么该如何处理产品变体呢? 对于系列产品的每个变体, 我们都将基于 抽象工厂接口创建不同的工厂类。 每个工厂类都只能返回特定类别的产品, 例如, ​ 现代家具工厂Modern­Furniture­Factory只能创建 现代椅子Modern­Chair 、 ​ 现代沙发Modern­Sofa和 现代咖啡桌Modern­Coffee­Table对象

客户端代码可以通过相应的抽象接口调用工厂和产品类。 你无需修改实际客户端代码, 就能更改传递给客户端的工厂类, 也能更改客户端代码接收的产品变体。
在这里插入图片描述
客户端无需了解其所调用工厂的具体类信息。

假设客户端想要工厂创建一把椅子。 客户端无需了解工厂类, 也不用管工厂类创建出的椅子类型。 无论是现代风格, 还是维多利亚风格的椅子, 对于客户端来说没有分别, 它只需调用抽象 椅子接口就可以了。 这样一来, 客户端只需知道椅子以某种方式实现了 sit­On坐下方法就足够了。 此外, 无论工厂返回的是何种椅子变体, 它都会和由同一工厂对象创建的沙发或咖啡桌风格一致。

最后一点说明: 如果客户端仅接触抽象接口, 那么谁来创建实际的工厂对象呢? 一般情况下, 应用程序会在初始化阶段创建具体工厂对象。 而在此之前, 应用程序必须根据配置文件或环境设定选择工厂类别。

抽象工厂模式结构

在这里插入图片描述
1、抽象产品 (Abstract Product) 为构成系列产品的一组不同但相关的产品声明接口。

2、具体产品 (Concrete Product) 是抽象产品的多种不同类型实现。 所有变体 (维多利亚/现代) 都必须实现相应的抽象产品 (椅子/沙发)。

3、具体产品 (Concrete Product) 是抽象产品的多种不同类型实现。 所有变体 (维多利亚/现代) 都必须实现相应的抽象产品 (椅子/沙发)。

4、具体工厂 (Concrete Factory) 实现抽象工厂的构建方法。 每个具体工厂都对应特定产品变体, 且仅创建此种产品变体。

5、尽管具体工厂会对具体产品进行初始化, 其构建方法签名必须返回相应的抽象产品。 这样, 使用工厂类的客户端代码就不会与工厂创建的特定产品变体耦合。 客户端 (Client) 只需通过抽象接口调用工厂和产品对象, 就能与任何具体工厂/产品变体交互。

伪代码

下面例子通过应用抽象工厂模式, 使得客户端代码无需与具体 UI 类耦合, 就能创建跨平台的 UI 元素, 同时确保所创建的元素与指定的操作系统匹配。
在这里插入图片描述
跨平台 UI 类示例。
跨平台应用中的相同 UI 元素功能类似, 但是在不同操作系统下的外观有一定差异。 此外, 你需要确保 UI 元素与当前操作系统风格一致。 你一定不希望在 Windows 系统下运行的应用程序中显示 macOS 的控件。

抽象工厂接口声明一系列构建方法, 客户端代码可调用它们生成不同风格的 UI 元素。 每个具体工厂对应特定操作系统, 并负责生成符合该操作系统风格的 UI 元素。

其运作方式如下: 应用程序启动后检测当前操作系统。 根据该信息, 应用程序通过与该操作系统对应的类创建工厂对象。 其余代码使用该工厂对象创建 UI 元素。 这样可以避免生成错误类型的元素。

使用这种方法, 客户端代码只需调用抽象接口, 而无需了解具体工厂类和 UI 元素。 此外, 客户端代码还支持未来添加新的工厂或 UI 元素。

这样一来, 每次在应用程序中添加新的 UI 元素变体时, 你都无需修改客户端代码。 你只需创建一个能够生成这些 UI 元素的工厂类, 然后稍微修改应用程序的初始代码, 使其能够选择合适的工厂类即可。

// 抽象工厂接口声明了一组能返回不同抽象产品的方法。这些产品属于同一个系列
// 且在高层主题或概念上具有相关性。同系列的产品通常能相互搭配使用。系列产
// 品可有多个变体,但不同变体的产品不能搭配使用。
interface GUIFactory is
    method createButton():Button
    method createCheckbox():Checkbox


// 具体工厂可生成属于同一变体的系列产品。工厂会确保其创建的产品能相互搭配
// 使用。具体工厂方法签名会返回一个抽象产品,但在方法内部则会对具体产品进
// 行实例化。
class WinFactory implements GUIFactory is
    method createButton():Button is
        return new WinButton()
    method createCheckbox():Checkbox is
        return new WinCheckbox()

// 每个具体工厂中都会包含一个相应的产品变体。
class MacFactory implements GUIFactory is
    method createButton():Button is
        return new MacButton()
    method createCheckbox():Checkbox is
        return new MacCheckbox()


// 系列产品中的特定产品必须有一个基础接口。所有产品变体都必须实现这个接口。
interface Button is
    method paint()

// 具体产品由相应的具体工厂创建。
class WinButton implements Button is
    method paint() is
        // 根据 Windows 样式渲染按钮。

class MacButton implements Button is
    method paint() is
        // 根据 macOS 样式渲染按钮

// 这是另一个产品的基础接口。所有产品都可以互动,但是只有相同具体变体的产
// 品之间才能够正确地进行交互。
interface Checkbox is
    method paint()

class WinCheckbox implements Checkbox is
    method paint() is
        // 根据 Windows 样式渲染复选框。

class MacCheckbox implements Checkbox is
    method paint() is
        // 根据 macOS 样式渲染复选框。

// 客户端代码仅通过抽象类型(GUIFactory、Button 和 Checkbox)使用工厂
// 和产品。这让你无需修改任何工厂或产品子类就能将其传递给客户端代码。
class Application is
    private field factory: GUIFactory
    private field button: Button
    constructor Application(factory: GUIFactory) is
        this.factory = factory
    method createUI() is
        this.button = factory.createButton()
    method paint() is
        button.paint()


// 程序会根据当前配置或环境设定选择工厂类型,并在运行时创建工厂(通常在初
// 始化阶段)。
class ApplicationConfigurator is
    method main() is
        config = readApplicationConfigFile()

        if (config.OS == "Windows") then
            factory = new WinFactory()
        else if (config.OS == "Mac") then
            factory = new MacFactory()
        else
            throw new Exception("错误!未知的操作系统。")

        Application app = new Application(factory)

抽象工厂模式适合应用场景

如果代码需要与多个不同系列的相关产品交互, 但是由于无法提前获取相关信息, 或者出于对未来扩展性的考虑, 你不希望代码基于产品的具体类进行构建, 在这种情况下, 你可以使用抽象工厂。

抽象工厂为你提供了一个接口, 可用于创建每个系列产品的对象。 只要代码通过该接口创建对象, 那么你就不会生成与应用程序已生成的产品类型不一致的产品。

1、如果你有一个基于一组抽象方法的类, 且其主要功能因此变得不明确, 那么在这种情况下可以考虑使用抽象工厂模式。

2、在设计良好的程序中, 每个类仅负责一件事。 如果一个类与多种类型产品交互, 就可以考虑将工厂方法抽取到独立的工厂类或具备完整功能的抽象工厂类中。

实现方式

1、以不同的产品类型与产品变体为维度绘制矩阵。

2、为所有产品声明抽象产品接口。 然后让所有具体产品类实现这些接口。

3、声明抽象工厂接口, 并且在接口中为所有抽象产品提供一组构建方法。

4、为每种产品变体实现一个具体工厂类。

5、在应用程序中开发初始化代码。 该代码根据应用程序配置或当前环境, 对特定具体工厂类进行初始化。 然后将该工厂对象传递给所有需要创建产品的类。

6、找出代码中所有对产品构造函数的直接调用, 将其替换为对工厂对象中相应构建方法的调用。

抽象工厂模式优缺点

在这里插入图片描述

与其他模式的关系

在许多设计工作的初期都会使用工厂方法模式 (较为简单, 而且可以更方便地通过子类进行定制), 随后演化为使用抽象工厂模式、 原型模式或生成器模式 (更灵活但更加复杂)。

生成器重点关注如何分步生成复杂对象。 抽象工厂专门用于生产一系列相关对象。 抽象工厂会马上返回产品, 生成器则允许你在获取产品前执行一些额外构造步骤。

抽象工厂模式通常基于一组工厂方法, 但你也可以使用原型模式来生成这些类的方法。

当只需对客户端代码隐藏子系统创建对象的方式时, 你可以使用抽象工厂来代替外观模式

你可以将抽象工厂桥接模式搭配使用。 如果由桥接定义的抽象只能与特定实现合作, 这一模式搭配就非常有用。 在这种情况下, 抽象工厂可以对这些关系进行封装, 并且对客户端代码隐藏其复杂性。

抽象工厂、 生成器和原型都可以用单例模式来实现。

C++ 抽象工厂模式讲解和代码示例

抽象工厂是一种创建型设计模式, 它能创建一系列相关的对象, 而无需指定其具体类。

抽象工厂定义了用于创建不同产品的接口, 但将实际的创建工作留给了具体工厂类。 每个工厂类型都对应一个特定的产品变体。

在创建产品时, 客户端代码调用的是工厂对象的构建方法, 而不是直接调用构造函数 ( new操作符)。 由于一个工厂对应一种产品变体, 因此它创建的所有产品都可相互兼容。

客户端代码仅通过其抽象接口与工厂和产品进行交互。 该接口允许同一客户端代码与不同产品进行交互。 你只需创建一个具体工厂类并将其传递给客户端代码即可。

使用示例: 抽象工厂模式在 C++ 代码中很常见。 许多框架和程序库会将它作为扩展和自定义其标准组件的一种方式。

识别方法: 我们可以通过方法来识别该模式——其会返回一个工厂对象。 接下来, 工厂将被用于创建特定的子组件。

概念示例

本例说明了抽象工厂设计模式的结构并重点回答了下面的问题:

它由哪些类组成?
这些类扮演了哪些角色?
模式中的各个元素会以何种方式相互关联?

main.cc: 概念示例

/**
 * Each distinct product of a product family should have a base interface. All
 * variants of the product must implement this interface.
 */
class AbstractProductA {
 public:
  virtual ~AbstractProductA(){};
  virtual std::string UsefulFunctionA() const = 0;
};

/**
 * Concrete Products are created by corresponding Concrete Factories.
 */
class ConcreteProductA1 : public AbstractProductA {
 public:
  std::string UsefulFunctionA() const override {
    return "The result of the product A1.";
  }
};

class ConcreteProductA2 : public AbstractProductA {
  std::string UsefulFunctionA() const override {
    return "The result of the product A2.";
  }
};

/**
 * Here's the the base interface of another product. All products can interact
 * with each other, but proper interaction is possible only between products of
 * the same concrete variant.
 */
class AbstractProductB {
  /**
   * Product B is able to do its own thing...
   */
 public:
  virtual ~AbstractProductB(){};
  virtual std::string UsefulFunctionB() const = 0;
  /**
   * ...but it also can collaborate with the ProductA.
   *
   * The Abstract Factory makes sure that all products it creates are of the
   * same variant and thus, compatible.
   */
  virtual std::string AnotherUsefulFunctionB(const AbstractProductA &collaborator) const = 0;
};

/**
 * Concrete Products are created by corresponding Concrete Factories.
 */
class ConcreteProductB1 : public AbstractProductB {
 public:
  std::string UsefulFunctionB() const override {
    return "The result of the product B1.";
  }
  /**
   * The variant, Product B1, is only able to work correctly with the variant,
   * Product A1. Nevertheless, it accepts any instance of AbstractProductA as an
   * argument.
   */
  std::string AnotherUsefulFunctionB(const AbstractProductA &collaborator) const override {
    const std::string result = collaborator.UsefulFunctionA();
    return "The result of the B1 collaborating with ( " + result + " )";
  }
};

class ConcreteProductB2 : public AbstractProductB {
 public:
  std::string UsefulFunctionB() const override {
    return "The result of the product B2.";
  }
  /**
   * The variant, Product B2, is only able to work correctly with the variant,
   * Product A2. Nevertheless, it accepts any instance of AbstractProductA as an
   * argument.
   */
  std::string AnotherUsefulFunctionB(const AbstractProductA &collaborator) const override {
    const std::string result = collaborator.UsefulFunctionA();
    return "The result of the B2 collaborating with ( " + result + " )";
  }
};

/**
 * The Abstract Factory interface declares a set of methods that return
 * different abstract products. These products are called a family and are
 * related by a high-level theme or concept. Products of one family are usually
 * able to collaborate among themselves. A family of products may have several
 * variants, but the products of one variant are incompatible with products of
 * another.
 */
class AbstractFactory {
 public:
  virtual AbstractProductA *CreateProductA() const = 0;
  virtual AbstractProductB *CreateProductB() const = 0;
};

/**
 * Concrete Factories produce a family of products that belong to a single
 * variant. The factory guarantees that resulting products are compatible. Note
 * that signatures of the Concrete Factory's methods return an abstract product,
 * while inside the method a concrete product is instantiated.
 */
class ConcreteFactory1 : public AbstractFactory {
 public:
  AbstractProductA *CreateProductA() const override {
    return new ConcreteProductA1();
  }
  AbstractProductB *CreateProductB() const override {
    return new ConcreteProductB1();
  }
};

/**
 * Each Concrete Factory has a corresponding product variant.
 */
class ConcreteFactory2 : public AbstractFactory {
 public:
  AbstractProductA *CreateProductA() const override {
    return new ConcreteProductA2();
  }
  AbstractProductB *CreateProductB() const override {
    return new ConcreteProductB2();
  }
};

/**
 * The client code works with factories and products only through abstract
 * types: AbstractFactory and AbstractProduct. This lets you pass any factory or
 * product subclass to the client code without breaking it.
 */

void ClientCode(const AbstractFactory &factory) {
  const AbstractProductA *product_a = factory.CreateProductA();
  const AbstractProductB *product_b = factory.CreateProductB();
  std::cout << product_b->UsefulFunctionB() << "\n";
  std::cout << product_b->AnotherUsefulFunctionB(*product_a) << "\n";
  delete product_a;
  delete product_b;
}

int main() {
  std::cout << "Client: Testing client code with the first factory type:\n";
  ConcreteFactory1 *f1 = new ConcreteFactory1();
  ClientCode(*f1);
  delete f1;
  std::cout << std::endl;
  std::cout << "Client: Testing the same client code with the second factory type:\n";
  ConcreteFactory2 *f2 = new ConcreteFactory2();
  ClientCode(*f2);
  delete f2;
  return 0;
}

Output.txt: 执行结果

Client: Testing client code with the first factory type:
The result of the product B1.
The result of the B1 collaborating with the (The result of the product A1.)

Client: Testing the same client code with the second factory type:
The result of the product B2.
The result of the B2 collaborating with the (The result of the product A2.)

来源:https://refactoringguru.cn/design-patterns/abstract-factory
仅供学习,非商业用途

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/169829.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue3系列二:如何实现对响应式数据的代理

上一篇文章中&#xff0c;我们讲解了 Vue3 中对响应式系统的实现&#xff0c;本章节会更进一步的从数据层面分享 Vue3 中对响应式数据是如何进行代理的&#xff0c;本文主要从引用类型数据和基本类型数据两个方面进行讲解。 实现数据代理的基础 理解 Proxy 和 Reflect 首先&…

26.Isaac教程--导航算法

导航算法 本节详细介绍导航算法。 ISAAC教程合集地址: https://blog.csdn.net/kunhe0512/category_12163211.html 文章目录导航算法全局路径规划器规划器模型可见性图算法优化器轨迹规划器全局路径规划器 Isaac 框架中的全局规划器问题被分解为三类&#xff1a;规划器模型、…

SpringBoot使用Swagger2

SpringBoot使用Swagger21.引入swagger依赖2.添加swagger配置类3.测试Controller4.测试5.swagger的注解Api注解ApiOperation注解ApiImplicitParam、ApiImplicitParams注解ApiParam注解ApiResponse、ApiResponses注解ResponseHeader注解ApiModel、ApiModelProperty注解6.更多1.引…

Redis 分布式锁实现文章集锦

前言近两年来微服务变得越来越热门&#xff0c;越来越多的应用部署在分布式环境中&#xff0c;在分布式环境中&#xff0c;数据一致性是一直以来需要关注并且去解决的问题&#xff0c;分布式锁也就成为了一种广泛使用的技术&#xff0c;常用的分布式实现方式为Redis&#xff0c…

PDF压缩在线怎么操作?这几个操作谁还不知道

我们在工作里经常处理非常多的文件&#xff0c;如果每个文件都要储存到设备上是非常困难的&#xff0c;因为这需要占用大量的内存&#xff0c;所以我们需要将PDF文件进行压缩&#xff0c;这样就可以释放我们设备的储存空间&#xff0c;不过对于很多人来说&#xff0c;压缩文件并…

自学Java篇之JFrame创建《石头迷阵小游戏》

自学Java篇之JFrame创建《石头迷阵小游戏》 根据黑马程序员java教程自学完java基础&#xff0c;觉得石头迷阵小游戏案例具有一定的编程练习价值&#xff0c;记录之。 最终效果&#xff1a; 案例主要思想流程&#xff1a; ​ 主要是思想是创建一个4*4的二维数组data&#xff…

【openGauss实战5】表管理及CURD

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&#x1f61…

汽车网络技术概述

车辆总线是一个专门的内部通信网络&#xff0c;将车辆&#xff08;如汽车、公共汽车、火车、工业或农业车辆、船舶或飞机&#xff09;内的部件相互连接。在电子学中&#xff0c;总线只是一个将多个电气或电子设备连接在一起的设备。车辆控制的特殊要求&#xff0c;如保证信息传…

数据分析-深度学习 Pytorch Day7

图像识别&#xff1a;CIFAR10图形识别1.CIFAR10数据集共有60000张彩色图像&#xff0c;这些图像式32*32*3&#xff0c;分为10个类&#xff0c;每个类6000张2.这里面有50000张用于训练&#xff0c;构成5个训练批&#xff0c;每一批10000张图&#xff1b;另外10000张用于测试&…

vhdx中的win10进行大版本系统升级

文章目录前言普通的win10大版本iso升级方式vhdx中的win10大版本升级方式难点分析 - 无法在虚拟驱动器上安装windows解决方案 - HyperV升级vhdx win10过程效果图hyperV虚机创建mbr引导启动项hyperV虚机设置在hyperV中升级过程图问题集锦问题一&#xff1a;hyverV虚机中升级报错&…

力扣刷题记录——561. 数组拆分、566. 重塑矩阵、575. 分糖果

本专栏主要记录力扣的刷题记录&#xff0c;备战蓝桥杯&#xff0c;供复盘和优化算法使用&#xff0c;也希望给大家带来帮助&#xff0c;博主是算法小白&#xff0c;希望各位大佬不要见笑&#xff0c;今天要分享的是——《力扣刷题记录——561. 数组拆分、566. 重塑矩阵、575. 分…

IDEA远程调试

1 概述 原理&#xff1a;本机和远程主机的两个 VM 之间使用 Debug 协议通过 Socket 通信&#xff0c;传递调试指令和调试信息。 被调试程序的远程虚拟机&#xff1a;作为 Debug 服务端&#xff0c;监听 Debug 调试指令。jdwp是Java Debug Wire Protocol的缩写。 调试程序的本…

初识redis

1.初识Redis Redis是一种键值型的NoSql数据库&#xff0c;这里有两个关键字&#xff1a; 键值型 NoSql 其中键值型&#xff0c;是指Redis中存储的数据都是以key、value对的形式存储&#xff0c;而value的形式多种多样&#xff0c;可以是字符串、数值、甚至json&#xff1a;…

HTTPS一定可靠吗?

HTTPS一定可靠吗&#xff1f;中间人伪装服务器首先我们先看看客户端是如何验证证书的&#xff1f;数字证书签发和验证流程客户端校验服务端数字证书的过程如何出现中间人伪装服务器成服务器的情况&#xff1f;避免该情况中间人伪装服务器 客户端向服务端发起HTTPS建立连接请求时…

你知道吗?python lxml 库也能用于操作 svg 图片

在大多数场景中&#xff0c;我们都用 lxml 库解析网页源码&#xff0c;但你是否知道&#xff0c;lxml 库也是可以操作 svg 图片的。我们可以使用 lxml 中的 etree 模块来解析 SVG 文件&#xff0c;然后使用 SVG 中的各种元素和属性来进行操作。 python lxml 库操作 svg 图片lxm…

传输层协议:TCP协议(上)——协议结构、主要特点以及应用场景

简介 传输控制协议&#xff08;英语&#xff1a;Transmission Control Protocol&#xff0c;缩写&#xff1a;TCP&#xff09;是一种面向连接的、可靠的、基于字节流的传输层通信协议&#xff0c;由IETF的RFC 793定义。在简化的计算机网络OSI模型中&#xff0c;它完成第四层传…

xubuntu系统偶发自动登出

项目场景&#xff1a; 系统&#xff1a;xubuntu-16.04.3-desktop 问题描述 使用xubuntu系统期间&#xff0c;在root用户下进行相关开发&#xff0c;突然系统会回到普通用户登录界面&#xff0c;需要输入密码进入到普通用户下   它会终止所有打开的应用程序和进程&#xff0…

【Vue组件通信方式】

文章目录前言一、父子组件通信1、父传子①使用props接收父组件传递的属性② 使用$attrs接收父组件未在 props 和 emits 中定义的属性和事件③使用 $parent获取父组件的信息2、子传父① 使用 $emit传递信息给父组件② 使用$refs获取子组件的属性和事件二、自定义事件&#xff1a…

独家丨DeepMind科学家、AlphaTensor一作解读背后的故事与实现细节

一直以来&#xff0c;DeepMind的Alpha系列工作&#xff0c;AlphaGo、AlphaStar等致力于棋类和游戏应用中战胜人类&#xff0c;而两个月前发布的AlphaTensor则把目标指向了科学计算领域&#xff0c;意在为矩阵乘法等基本计算任务自动设计更高效的经典算法&#xff0c;这一工作一…

Burpsuite超详细安装教程(附安装包)

写在开头 Burp Suite 是用于攻击web 应用程序的集成平台&#xff0c;包含了许多工具。Burp Suite为这些工具设计了许多接口&#xff0c;以加快攻击应用程序的过程。所有工具都共享一个请求&#xff0c;并能处理对应的HTTP 消息、持久性、认证、代理、日志、警报。 接下来我来…