YOLOv10 | 手把手教你利用yolov10训练自己数据集(含环境搭建 + 参数解析 + 数据集查找 + 模型训练、推理、导出)

news2024/12/23 21:20:54

一、前言

本文内含YOLOv10网络结构图 + 各个创新模块手撕结构图 + 训练教程 + 推理教程 +  参数解析 + 环境搭建 + 数据集获取等一些有关YOLOv10的内容!


目录

一、 前言

 二、整体网络结构图 

三、空间-通道分离下采样

3.1 SCDown介绍 

3.2 C2fUIB介绍

3.3 PSA介绍

4.4 更多YOLOv10内容介绍 

四、环境搭建

五、数据集获取

六、模型获取

七、模型训练

7.1 训练的三种方式

7.1.1 方式一

7.1.2 方式二(推荐)

7.1.3 方式三 

八、模型验证/测试 

九、模型推理

十、模型输出

十一、全文总结


论文地址:官方论文地址点击此处即可跳转

代码地址:官方代码地址点击此处即可跳转

 二、整体网络结构图 


三、空间-通道分离下采样

论文中主要提出了三个创新的结构分别是C2fUIB、PSA、SCDown,下面分别来介绍一下这三个主要的创新模块 


3.1 SCDown介绍 

YOLO通常利用带有步幅2的常规3×3标准卷积,同时实现空间下采样(从H×W到H/2×W/2)和通道变换(从C到2C)。这引入了不可忽视的计算成本O(9/2HW C^2)和参数数量O(18C^2)相反,我们提出分离空间减少和通道增加操作,进行更高效的下采样。具体而言,我们首先利用点卷积调整通道维度,然后利用深度卷积进行空间下采样。这将计算成本减少到O(2HW C^2 + 9/2HW C)和参数数量减少到O(2C^2 + 18C)。同时,这最大限度地保留了下采样过程中的信息,从而在减少延迟的同时实现竞争性性能。 


3.2 C2fUIB介绍

YOLO通常为所有阶段使用相同的基本构建块,例如YOLOv8中的瓶颈块。为全面检查这种同质设计的冗余,我们利用内在秩分析各阶段的冗余。具体而言,我们计算每个阶段最后一个基本块的最后一个卷积的数值秩,表示超过阈值的奇异值数量。图3.(a)展示了YOLOv8的结果,表明深层阶段和大模型往往表现出更多冗余。此观察表明,简单地为所有阶段应用相同的块设计对于最佳的容量-效率权衡来说是次优的。为此,我们提出了一种基于秩的块设计方案,旨在通过紧凑的架构设计减少冗余阶段的复杂性。我们首先提出了一种紧凑的倒置块(CIB)结构,它采用廉价的深度卷积进行空间混合,并采用成本效益高的点卷积进行通道混合,如图3.(b)所示。它可以作为高效的基本构建块,例如嵌入ELAN结构中。然后,我们倡导一种基于秩的块分配策略,以在保持竞争性容量的同时实现最佳效率。具体而言,给定一个模型,我们按内在秩从低到高排序其所有阶段。我们进一步检查用CIB替换领先阶段的基本块的性能变化。如果与给定模型相比没有性能下降,我们继续替换下一个阶段,否则停止该过程。这样,我们可以在各个阶段和模型规模中实现自适应紧凑块设计,在不影响性能的情况下实现更高的效率(这个结构外部结构是和C2f一样只是用CIB结构替换了C2f的Bottleneck结构)


class CIB(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = nn.Sequential(
            Conv(c1, c1, 3, g=c1),
            Conv(c1, 2 * c_, 1),
            Conv(2 * c_, 2 * c_, 3, g=2 * c_) if not lk else RepVGGDW(2 * c_),
            Conv(2 * c_, c2, 1),
            Conv(c2, c2, 3, g=c2),
        )

        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv1(x) if self.add else self.cv1(x)


class C2fCIB(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))


3.3 PSA介绍

自注意力在各种视觉任务中得到了广泛应用,因为它具有显著的全局建模能力。然而,自注意力机制表现出较高的计算复杂度和内存占用。为了解决这个问题,鉴于注意力头冗余的普遍存在,我们提出了一种高效的部分自注意力(PSA)模块设计,如图3(c)所示。

具体来说,我们通过1×1卷积将特征均匀地划分为两部分。然后,我们仅将其中一部分输入到由多头自注意力模块(MHSA)和前馈网络(FFN)组成的NPSA块中。两部分特征随后被连接并通过1×1卷积融合。此外,我们遵循将MHSA中查询和键的维度分配为值的一半,并将LayerNorm替换为BatchNorm以加快推理速度。

PSA仅在分辨率最低的Stage 4之后放置,以避免自注意力二次复杂性带来的过多开销。通过这种方式,可以在低计算成本下将全局表示学习能力引入YOLO模型,从而增强模型能力并提高性能。

通过这些精度驱动的设计,我们能够在不显著增加计算成本的情况下提升YOLO模型的性能。

class Attention(nn.Module):
    def __init__(self, dim, num_heads=8,
                 attn_ratio=0.5):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.key_dim = int(self.head_dim * attn_ratio)
        self.scale = self.key_dim ** -0.5
        nh_kd = nh_kd = self.key_dim * num_heads
        h = dim + nh_kd * 2
        self.qkv = Conv(dim, h, 1, act=False)
        self.proj = Conv(dim, dim, 1, act=False)
        self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)

    def forward(self, x):
        B, _, H, W = x.shape
        N = H * W
        qkv = self.qkv(x)
        q, k, v = qkv.view(B, self.num_heads, -1, N).split([self.key_dim, self.key_dim, self.head_dim], dim=2)

        attn = (
            (q.transpose(-2, -1) @ k) * self.scale
        )
        attn = attn.softmax(dim=-1)
        x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) + self.pe(v.reshape(B, -1, H, W))
        x = self.proj(x)
        return x

class PSA(nn.Module):

    def __init__(self, c1, c2, e=0.5):
        super().__init__()
        assert(c1 == c2)
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)
        
        self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
        self.ffn = nn.Sequential(
            Conv(self.c, self.c*2, 1),
            Conv(self.c*2, self.c, 1, act=False)
        )
        
    def forward(self, x):
        a, b = self.cv1(x).split((self.c, self.c), dim=1)
        b = b + self.attn(b)
        b = b + self.ffn(b)
        return self.cv2(torch.cat((a, b), 1))


4.4 更多YOLOv10内容介绍 

由于篇幅内容不宜太多,更多有关YOLOv10的内容介绍可以看我的另一篇文章介绍的十分详细!

YOLOv10详细解读 | 一文带你深入了解yolov10的创新点(附网络结构图 + 举例说明) | 点击即可跳转

 


四、环境搭建

大家如果没有搭建环境可以看我的另一篇博客,里面讲述了如何搭建pytorch环境。

Win11上Pytorch的安装并在Pycharm上调用PyTorch最新超详细过程并附详细的系统变量添加过程,可解决pycharm中pip不好使的问题


五、数据集获取

在我们开始训练之前,我们需要一份数据集,如何获取一个YOLOv10的数据集大家可以看我的另一篇博客从YOLO官方指定的数据集网站Roboflow下载数据模型训练

超详细教程YoloV8官方推荐免费数据集网站Roboflow一键导出Voc、COCO、Yolo、Csv等格式

我在上面随便下载了一个 数据集用它导出yolov8的数据集,以及自动给转换成txt的格式yaml文件也已经配置好了,我们直接用就可以。 

8673527d34eb42348770158c69de678f.png


六、模型获取

模型获取的方式,我们需要去Github上面下载压缩包,

我们需要打开如下的网址点击此处即可跳转YOLOv10官方代码网址,我们会出现如下界面!

我们下载完YOLOv10压缩包利用我们自己的IDEA工具打开即可! 

在我们配置好环境之后,模型获取完成之后,我们可以进行配置的安装我们可以在命令行下输入如下命令进行环境的配置。

pip install -r requirements.txt

输入如上命令之后我们就可以看到命令行在安装模型所需的库了。 


七、模型训练

我们来看一下主要的ultralytics目录结构,

我门打开cfg目录下的default.yaml文件可以配置模型的参数,

在其中和模型训练有关的参数及其解释如下:

参数名输入类型参数解释
0taskstrYOLO模型的任务选择,选择你是要进行检测、分类等操作
1modestrYOLO模式的选择,选择要进行训练、推理、输出、验证等操作
2modelstr/optional模型的文件,可以是官方的预训练模型,也可以是训练自己模型的yaml文件
3datastr/optional模型的地址,可以是文件的地址,也可以是配置好地址的yaml文件
4epochsint训练的轮次,将你的数据输入到模型里进行训练的次数
5patienceint早停机制,当你的模型精度没有改进了就提前停止训练
6batchint我们输入的数据集会分解为多个子集,一次向模型里输入多少个子集
7imgszint/list输入的图片的大小,可以是整数就代表图片尺寸为int*int,或者list分别代表宽和高[w,h]
8savebool是否保存模型以及预测结果
9save_periodint在训练过程中多少次保存一次模型文件,就是生成的pt文件
10cachebool参数cache用于控制是否启用缓存机制。
11deviceint/str/list/optionalGPU设备的选择:cuda device=0 or device=0,1,2,3 or device=cpu
12workersint工作的线程,Windows系统一定要设置为0否则很可能会引起线程报错
13namestr/optional模型保存的名字,结果会保存到'project/name' 目录下
14exist_okbool如果模型存在的时候是否进行覆盖操作
15prepetrained

bool

参数pretrained用于控制是否使用预训练模型。
16optimizerstr优化器的选择choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
17verbosebool用于控制在执行过程中是否输出详细的信息和日志。
18seedint随机数种子,模型中涉及到随机的时候,根据随机数种子进行生成
19deterministicbool用于控制是否启用确定性模式,在确定性模式下,算法的执行将变得可重复,即相同的输入将产生相同的输出
20single_clsbool是否是单标签训练
21rectbool当 rect 设置为 True 时,表示启用矩形训练或验证。矩形训练或验证是一种数据处理技术,其中在训练或验证过程中,输入数据会被调整为具有相同宽高比的矩形形状。
22

cos_lr

bool控制是否使用余弦学习率调度器
23close_mosaicint控制在最后几个 epochs 中是否禁用马赛克数据增强
24resumebool用于从先前的训练检查点(checkpoint)中恢复模型的训练。
25ampbool用于控制是否进行自动混合精度
26fractionfloat用于指定训练数据集的一部分进行训练的比例。默认值为 1.0
27profilebool用于控制是否在训练过程中启用 ONNX 和 TensorRT 的性能分析
28freezeint/list/optinal用于指定在训练过程中冻结前 n 层或指定层索引的列表,以防止它们的权重更新。这对于迁移学习或特定层的微调很有用。


7.1 训练的三种方式

7.1.1 方式一

我们可以通过命令直接进行训练在其中指定参数,但是这样的方式,我们每个参数都要在其中打出来。命令如下:

yolo task=detect mode=train model=yolov10n.yaml data=替换你数据集的yaml文件地址 batch=16 epochs=100 imgsz=640 workers=0 device=0

需要注意的是如果你是Windows系统的电脑其中的Workers最好设置成0否则容易报线程的错误。


7.1.2 方式二(推荐)

通过指定cfg直接进行训练,我们配置好ultralytics/cfg/default.yaml这个文件之后,可以直接执行这个文件进行训练,这样就不用在命令行输入其它的参数了。

yolo cfg=ultralytics/cfg/default.yaml


7.1.3 方式三 

我们可以通过创建py文件来进行训练,这样的好处就是不用在终端上打命令,这也能省去一些工作量,我们在根目录下创建一个名字为run.py的文件,在其中输入代码

from ultralytics import YOLO
 
model = YOLO("权重的地址 or 模型配置文件的地址")
 
data = "数据集文件Yaml文件的地址"
 
model.train(data=data, epochs=100, batch=16)

 无论通过上述的哪一种方式在控制台输出如下图片的内容就代表着开始训练成功了!


八、模型验证/测试 

参数名类型参数讲解
1valbool用于控制是否在训练过程中进行验证/测试。
2splitstr用于指定用于验证/测试的数据集划分。可以选择 'val'、'test' 或 'train' 中的一个作为验证/测试数据集
3save_jsonbool用于控制是否将结果保存为 JSON 文件
4save_hybirdbool用于控制是否保存标签和附加预测结果的混合版本
5conffloat/optional用于设置检测时的目标置信度阈值
6ioufloat用于设置非极大值抑制(NMS)的交并比(IoU)阈值。
7max_detint用于设置每张图像的最大检测数。
8halfbool用于控制是否使用半精度(FP16)进行推断。
9dnnbool,用于控制是否使用 OpenCV DNN 进行 ONNX 推断。
10plotsbool用于控制在训练/验证过程中是否保存绘图结果。

 验证我们划分的验证集/测试集的情况,也就是评估我们训练出来的best.pt模型好与坏

yolo task=detect mode=val model=best.pt data=data.yaml device=0


九、模型推理

我们训练好自己的模型之后,都会生成一个模型文件,保存在你设置的目录下,当我们再次想要实验该模型的效果之后就可以调用该模型进行推理了,我们也可以用官方的预训练权重来进行推理。

推理的方式和训练一样我们这里就选一种来进行举例其它的两种方式都是一样的操作只是需要改一下其中的一些参数即可:

参数讲解

参数名类型参数讲解
0sourcestr/optinal用于指定图像或视频的目录
1showbool用于控制是否在可能的情况下显示结果
2save_txtbool用于控制是否将结果保存为 .txt 文件
3save_confbool用于控制是否在保存结果时包含置信度分数
4save_cropbool用于控制是否将带有结果的裁剪图像保存下来
5show_labelsbool用于控制在绘图结果中是否显示目标标签
6show_confbool用于控制在绘图结果中是否显示目标置信度分数
7vid_strideint/optional用于设置视频的帧率步长
8stream_bufferbool用于控制是否缓冲所有流式帧(True)或返回最新的帧(False)
9line_widthint/list[int]/optional用于设置边界框的线宽度,如果缺失则自动设置
10visualizebool用于控制是否可视化模型的特征
11augmentbool用于控制是否对预测源应用图像增强
12agnostic_nmsbool用于控制是否使用无关类别的非极大值抑制(NMS)
13classesint/list[int]/optional用于按类别筛选结果
14retina_masksbool用于控制是否使用高分辨率分割掩码
15boxesbool用于控制是否在分割预测中显示边界框。
yolo task=detect mode=predict model=best.pt source=images device=0

 这里需要需要注意的是我们用模型进行推理的时候可以选择照片也可以选择一个视频的格式都可以。支持的视频格式有 

  • MP4(.mp4):这是一种常见的视频文件格式,通常具有较高的压缩率和良好的视频质量

  • AVI(.avi):这是一种较旧但仍广泛使用的视频文件格式。它通常具有较大的文件大小

  • MOV(.mov):这是一种常见的视频文件格式,通常与苹果设备和QuickTime播放器相关

  • MKV(.mkv):这是一种开放的多媒体容器格式,可以容纳多个视频、音频和字幕轨道

  • FLV(.flv):这是一种用于在线视频传输的流式视频文件格式


十、模型输出

当我们进行部署的时候可以进行文件导出,然后在进行部署。

YOLOv8支持的输出格式有如下

1. ONNX(Open Neural Network Exchange):ONNX 是一个开放的深度学习模型表示和转换的标准。它允许在不同的深度学习框架之间共享模型,并支持跨平台部署。导出为 ONNX 格式的模型可以在支持 ONNX 的推理引擎中进行部署和推理。

2. TensorFlow SavedModel:TensorFlow SavedModel 是 TensorFlow 框架的标准模型保存格式。它包含了模型的网络结构和参数,可以方便地在 TensorFlow 的推理环境中加载和使用。

3. PyTorch JIT(Just-In-Time):PyTorch JIT 是 PyTorch 的即时编译器,可以将 PyTorch 模型导出为优化的 Torch 脚本或 Torch 脚本模型。这种格式可以在没有 PyTorch 环境的情况下进行推理,并且具有更高的性能。

4. Caffe Model:Caffe 是一个流行的深度学习框架,它使用自己的模型表示格式。导出为 Caffe 模型的文件可以在 Caffe 框架中进行部署和推理。

5. TFLite(TensorFlow Lite):TFLite 是 TensorFlow 的移动和嵌入式设备推理框架,支持在资源受限的设备上进行高效推理。模型可以导出为 TFLite 格式,以便在移动设备或嵌入式系统中进行部署。

6. Core ML(Core Machine Learning):Core ML 是苹果的机器学习框架,用于在 iOS 和 macOS 上进行推理。模型可以导出为 Core ML 格式,以便在苹果设备上进行部署。

这些格式都提供了不同的优势和适用场景。选择合适的导出格式应该考虑到目标平台和部署环境的要求,以及所使用的深度学习框架的支持情况。

模型输出的参数有如下

参数名类型参数解释
0formatstr导出模型的格式
1kerasbool表示是否使用Keras
2optimizebool用于在导出TorchScript模型时进行优化,以便在移动设备上获得更好的性能
3int8bool用于在导出CoreML或TensorFlow模型时进行INT8量化
4dynamicbool用于在导出CoreML或TensorFlow模型时进行INT8量化
5simplifybool用于在导出ONNX模型时进行模型简化
6opsetint/optional用于指定导出ONNX模型时的opset版本
7workspaceint用于指定TensorRT模型的工作空间大小,以GB为单位
8nmsbool用于在导出CoreML模型时添加非极大值抑制(NMS)

命令行命令如下: 

yolo task=detect mode=export model=best.pt format=onnx  

到此为止本文的讲解就结束了,希望对大家对于YOLOv8模型理解有帮助,希望本文能够帮助到大家。


十一、全文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv10改进有效涨点专栏,本专栏目前为新开的,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏目录:YOLOv10改进有效专栏 | 持续复现前沿机制

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1698262.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【QT八股文】系列之篇章3 | QT的多线程以及QThread与QObject

【QT八股文】系列之篇章3 | QT的多线程 前言4. 多线程为什么需要使用线程池线程池的基础知识python中创建线程池的方法使用threading库队列Queue来实现线程池使用threadpool模块,这是个python的第三方模块,支持python2和python3 QThread的定义QT多线程知…

【kubernetes】探索k8s集群中金丝雀发布后续 + 声明式资源管理yaml

目录 一、K8S常见的发布方式 1.1蓝绿发布 1.2灰度发布(金丝雀发布) 1.3滚动发布 二、金丝雀发布 三、声明式管理方法 3.1YAML 语法格式 3.1.1查看 api 资源版本标签 3.1.2查看资源简写 3.2YAML文件详解 3.2.1Deployment.yaml 3.2.2Pod.yaml …

数据结构(五)

数据结构(五) 常见的排序算法内部排序交换插入选择归并基数 外部排序基于归并的 常见的排序算法 内部排序 交换 冒泡:每一次运行总会将最小的或者最大的放到前面,如果需要交换,一直在交换 快速排序*:经过…

《C++ Primer Plus》第十一章复习题和编程练习

这里写目录标题 一、复习题二、编程练习 一、复习题 1. 使用成员函数为Stonewt类重载乘法运算符,该运算符将数据成员与double类型的值相乘。注意,当用英石和磅表示时,需要进位。也就是说,将10英石8磅乘以2等于21英石2磅。 答&am…

Python语言基础学习(下)

目录 一、顺序语句 二、条件语句 (1) if (2) if - else (3) if - elif - else 缩进和代码块 空语句 pass 三、循环语句 while 循环 for 循环 continue break 四、函数 创建函数 调用函数 函数返回 函数变量 函数递归 关键字参数 五、列表和元组 创建列表 …

创新实训2024.05.25日志:Web应用技术选型

我们的web应用使用python web的fastapi框架,通过uvicorn开启web服务。 1. refs 官网文档:FastAPI (tiangolo.com) github:https://github.com/tiangolo/fastapi 2. 环境配置 python:3.11 uvicorn:0.29.0 pip install "uvicorn[stan…

【启程Golang之旅】基本变量与类型讲解

欢迎来到Golang的世界!在当今快节奏的软件开发领域,选择一种高效、简洁的编程语言至关重要。而在这方面,Golang(又称Go)无疑是一个备受瞩目的选择。在本文中,带领您探索Golang的世界,一步步地了…

嵌入式全栈开发学习笔记---C语言笔试复习大全25(实现学生管理系统)

目录 实现学生管理系统 第一步:结构体声明 第二步:重命名结构体 第三步:限定可以存储的最大学生数目 第四步:定义结构体指针数组和定义一个整型变量存放当前的人数 第五步:设计欢迎界面 第六步:设计…

【设计模式】JAVA Design Patterns——Command(事务模式)

🔍目的 将请求封装为对象,从而使你可以将具有不同请求的客户端参数化,队列或记录请求,并且支持可撤销操作。 🔍解释 真实世界例子 有一个巫师在地精上施放咒语。咒语在地精上一一执行。第一个咒语使地精缩小&#xff0…

从关键新闻和最新技术看AI行业发展(2024.5.6-5.19第二十三期) |【WeThinkIn老实人报】

写在前面 【WeThinkIn老实人报】旨在整理&挖掘AI行业的关键新闻和最新技术,同时Rocky会对这些关键信息进行解读,力求让读者们能从容跟随AI科技潮流。也欢迎大家提出宝贵的优化建议,一起交流学习💪 欢迎大家关注Rocky的公众号&…

C++之std::is_trivially_copyable(平凡可复制类型检测)

目录 1.C基础回顾 1.1.平凡类型 1.2.平凡可复制类型 1.3.标准布局类型 2.std::is_trivially_copyable 2.1.定义 2.2.使用 2.3.总结 1.C基础回顾 在C11中,平凡类型(Trivial Type)、平凡可复制类型(TrivialCopyable&#x…

深入理解与防御跨站脚本攻击(XSS):从搭建实验环境到实战演练的全面教程

跨站脚本攻击(XSS)是一种常见的网络攻击手段,它允许攻击者在受害者的浏览器中执行恶意脚本。以下是一个XSS攻击的实操教程,包括搭建实验环境、编写测试程序代码、挖掘和攻击XSS漏洞的步骤。 搭建实验环境 1. 安装DVWA&#xff…

8.什么是HOOK

程序编译的本质是,首先计算机它只能看得懂机器码也就是只能看得懂数字,机器码学起来很费劲然后就创造了编译器这个东西,编译器它懂机器语言所以它可以跟机器沟通,而我们人可以跟编译器沟通,人跟编译器的语言就是各种各…

GBDT、XGBoost、LightGBM算法详解

文章目录 一、GBDT (Gradient Boosting Decision Tree) 梯度提升决策树1.1 回归树1.2 梯度提升树1.3 Shrinkage1.4 调参1.5 GBDT的适用范围1.6 优缺点 二、XGBoost (eXtreme Gradient Boosting)2.1 损失函数2.2 正则项2.3 打分函数计算2.4 分裂节点2.5 算法过程2.6 参数详解2.7…

不拍视频,不直播怎么在视频号卖货赚钱?开一个它就好了!

大家好,我是电商糖果 视频号这两年看着抖音卖货的热度越来越高,也想挤进电商圈。 于是它模仿抖音推出了自己的电商平台——视频号小店。 只要商家入驻视频号小店,就可以在视频号售卖商品。 具体怎么操作呢,需要拍视频&#xf…

leedcode【142】. 环形链表 II——Java解法

Problem: 142. 环形链表 II 思路解题方法复杂度Code性能 思路 1.用快慢指针找到相遇的点(快指针一次走一步,慢指针一次走两步) 2.一个指针从head开始,一个指针从相遇点开始,一次一步,相遇处即为环入口 解题…

Vmware 17安装 CentOS9

前言 1、提前下载好需要的CentOS9镜像,下载地址,这里下载的是x86_64 2、提前安装好vmware 17,下载地址 ,需要登录才能下载 安装 1、创建新的虚拟机 2、在弹出的界面中选择对应的类型,我这里选择自定义,点…

P459 包装类Wrapper

包装类的分类 1)针对八种基本数据类型相应的引用类型——包装类。 2)有了类的特点,就可以调用类中的方法。 Boolean包装类 Character包装类 其余六种Number类型的包装类 包装类和基本数据类型的相互转换 public class Integer01 {publi…

【大数据面试题】32 Flink 怎么重复读 Kafka?

一步一个脚印,一天一道面试题 首先,为什么要读过的 Kafka 数据重写读一次呢?什么场景下要怎么做呢? 答:当任务失败,从检查点Checkpoint 开始重启时,检查点的数据是之前的了,就需要…

从 0 开始实现一个网页聊天室 (小型项目)

实现功能 用户注册和登录好友列表展示会话列表展示: 显示当前正在进行哪些会话 (单聊 / 群聊) , 选中好友列表中的某个好友, 会生成对应的会话实时通信, A给B发送消息, B的聊天界面 / 会话界面能立刻显示新的消息 TODO: 添加好友功能用户头像显示传输图片 / 表情包历史消息搜…