Halcon 极坐标转换图像

news2024/9/20 8:01:06

一、概述

先看效果

将圆形的用极坐标转换成矩性然后再进行识别或者其他缺陷检测,最后在还圆到原图中

二、原理:

halcon 圆环类缺陷检测的一种方法(极坐标变换法)_halcon缺口检测-CSDN博客

图像极坐标变换与反变换(Halcon + OpenCV)_将 环形虹膜图像的极坐标转换成矩形图像-CSDN博客

 极坐标转换: 圆形图像--》矩形图像   

原理:

三、实践

案例一



dev_open_window (0, 0, 512, 512, 'black', WindowHandle)
read_image (Beer, '/tem.png')
get_image_size (Beer, Width, Height)
draw_circle (WindowHandle, Row1, Column1, Radius)
gen_circle (Circle, Row1, Column1, Radius)
reduce_domain (Beer, Circle, ImageReduced)
PI:=3.1415926
*WidthPolar := (OuterRadius - 5)*2*3.14
W:=(Radius-150)*2*3.14
H:=300
*逆时针,从0度到360度,转一圈
*                        原始图像     极坐标之后的图像   图像中心坐标row col  起始角度 终止角度  开始半径 结束半径                   差值方式
polar_trans_image_ext (ImageReduced, PolarTransImage,  Row1,  Column1,      0,      2*PI,     0,     Radius*2,   W, H, 'bilinear')

dev_display (ImageZoomed)
*长和宽必须是原图像的长和宽,否则尺寸太小的话,图像容易超出,导致一片黑,看不到转换结果
*极坐标图像转笛卡尔坐标系图像  恢复之前的图像
polar_trans_image_inv (PolarTransImage, RestoreImage, Row1, Column1, 0, 2*PI, 0, Radius, Width, Height, 'bilinear')
write_image (RestoreImage, 'jpeg 100', 0, 'd:\\2.jpg')
 

*点坐标的转换
*Contour的原坐标是基于极坐标系,我们把它转到笛卡尔坐标系
gen_contour_polygon_xld (Contour, [155.568, 137.404, 30], [47.4712, 116.479, 260])
polar_trans_contour_xld_inv (Contour, XYTransContour, Row1, Column1, 0, 2*PI, 0, Radius, Width, Height, Width, Height)

 

 案例二、



dev_update_off ()
get_system ('clip_region', Information)
set_system ('clip_region', 'true')
read_image (Image, 'barcode.png')
get_image_size (Image, Width, Height)
dev_close_window ()
dev_open_window (0, 0, Width / 2, Height / 2, 'black', WindowHandle)
dev_set_colored (12)
dev_display (Image)
stop ()
* 分割包含条形码的CD上的环。
threshold (Image, Region, 0, 100)
closing_circle (Region, Region, 3.5)
connection (Region, ConnectedRegions)
*筛选出圆环
select_shape (ConnectedRegions, Ring, ['width','height'], 'and', [550,550], [750,750])
shape_trans (Ring, OuterCircle, 'outer_circle')
complement (Ring, RegionComplement)
connection (RegionComplement, ConnectedRegions)
select_shape (ConnectedRegions, InnerCircle, ['width','height'], 'and', [450,450], [650,650])
*提取并生成圆环区域外圆,内圆
* 确定包含条形码的环的参数。
smallest_circle (Ring, Row, Column, OuterRadius)
smallest_circle (InnerCircle, InnerRow, InnerColumn, InnerRadius)
dev_set_color ('green')
dev_set_draw ('margin')
dev_set_line_width (3)
dev_display (Image)
dev_display (OuterCircle)
dev_display (InnerCircle)
stop ()
* 现在读条形码。这是通过计算包含条形码的图像中圆环的极坐标变换来实现的。
* WidthPolar := 1440
*内圆的周长
WidthPolar := (OuterRadius - 5)*2*3.14
HeightPolar := round(OuterRadius - InnerRadius - 10)
*极坐标变换(中心Row, Column,用圆环的圆心坐标。起始角度是0到360度。起始半径分别是圆环内圆的半径和外圆的半径。
*宽高分别是圆环外圆的周长和外圆半径减去内圆半径的值)
polar_trans_image_ext (Image, PolarTransImage, Row, Column,0, rad(360), InnerRadius + 5, OuterRadius - 5, WidthPolar, HeightPolar, 'bilinear')
*逆向转换回圆环图像,以查看此函数效果
polar_trans_image_inv (PolarTransImage, XYTransImage, Row, Column, 0, rad(360), InnerRadius + 5, OuterRadius - 5,  Width, Height, 'nearest_neighbor')
invert_image (PolarTransImage, ImageInvert)
* 由于条形码区域相当平坦,因此图像的高度增加了一倍。
zoom_image_factor (ImageInvert, ImageZoomed, 1, 2, 'weighted')
get_image_size (ImageZoomed, Width1, Height1)
dev_resize_window_fit_size (0, 0, Width1, Height1, -1, -1)
dev_display (ImageZoomed)
stop()
create_bar_code_model ([], [], BarCodeHandle)
* 条形比较小,对比度也低;因此,阈值从0.05提高到0.1。
set_bar_code_param (BarCodeHandle, 'element_size_min', 1.5)
set_bar_code_param (BarCodeHandle, 'meas_thresh', 0.3)
find_bar_code (ImageZoomed, SymbolRegions, BarCodeHandle, 'Code 128', DecodedDataStrings)
clear_bar_code_model (BarCodeHandle)
dev_set_window_extents (-1, -1, WidthPolar / 2, HeightPolar)
dev_display (ImageZoomed)
dev_display (SymbolRegions)
set_system ('clip_region', Information)
disp_message (WindowHandle, DecodedDataStrings, 'image', 10, 180, 'black', 'true')
stop ()

* 主要是要显示到原来的那个区域
* 将条码区域转换回原始图像并显示。
zoom_region (SymbolRegions, SymbolRegions, 1, 0.5)
polar_trans_region_inv (SymbolRegions, CodeRegionCircular, Row, Column, 0, rad(360), InnerRadius + 5, OuterRadius - 5, WidthPolar, HeightPolar, Width, Height, 'nearest_neighbor')
dev_set_window_extents (-1, -1, Width / 2, Height / 2)
dev_display (Image)
dev_display (CodeRegionCircular)
disp_message (WindowHandle, DecodedDataStrings, 'window', 12, 12, 'black', 'true')




 案例三



* 
* tuning parameters
SmoothX := 501
ThresholdOffset := 25
MinDefectSize := 50
* 
* initialization
PolarResolution := 640
RingSize := 70
get_system ('store_empty_region', StoreEmptyRegion)
set_system ('store_empty_region', 'false')
read_image (Image, 'bottles/bottle_mouth_01')
dev_update_off ()
dev_close_window ()
dev_close_window ()
dev_open_window_fit_image (Image, 0, 0, 640, 512, WindowHandle1)
set_display_font (WindowHandle1, 16, 'mono', 'true', 'false')
dev_display (Image)
dev_set_draw ('margin')
dev_set_line_width (3)
dev_open_window_fit_size (0, 648, RingSize, PolarResolution, 150, 512, WindowHandle)
dev_set_draw ('margin')
dev_set_line_width (3)
dev_set_color ('red')
* 
* Main loop
* 
* Detect defects in bottle necks
for Index := 1 to 16 by 1
    read_image (Image, 'bottles/bottle_mouth_' + Index$'.02')
    * 
    * Part 1: 使用blob 分析将外部圆找出来
    auto_threshold (Image, Regions, 2)
    select_obj (Regions, DarkRegion, 1)
    opening_circle (DarkRegion, RegionOpening, 3.5)
    closing_circle (RegionOpening, RegionClosing, 25.5)
    fill_up (RegionClosing, RegionFillUp)
    boundary (RegionFillUp, RegionBorder, 'outer')
    dilation_circle (RegionBorder, RegionDilation, 3.5)
    reduce_domain (Image, RegionDilation, ImageReduced)
    * 
    * 使用边缘亚像素来找轮廓  并拟合圆
    edges_sub_pix (ImageReduced, Edges, 'canny', 0.5, 20, 40)
    segment_contours_xld (Edges, ContoursSplit, 'lines_circles', 5, 4, 2)
    union_cocircular_contours_xld (ContoursSplit, UnionContours, 0.9, 0.5, 0.5, 200, 50, 50, 'true', 1)
    length_xld (UnionContours, Length)
    select_obj (UnionContours, LongestContour, sort_index(Length)[|Length| - 1] + 1)
    fit_circle_contour_xld (LongestContour, 'ahuber', -1, 0, 0, 3, 2, Row, Column, Radius, StartPhi, EndPhi, PointOrder)
    * 
    * Part 2: 极坐标转换
    gen_circle (Circle, Row, Column, Radius)
    dilation_circle (Circle, RegionDilation, 5)
    erosion_circle (Circle, RegionErosion, RingSize - 5)
    difference (RegionDilation, RegionErosion, RegionDifference)
    reduce_domain (Image, RegionDifference, ImageReduced)
    polar_trans_image_ext (ImageReduced, ImagePolar, Row, Column, 0, rad(360), Radius - RingSize, Radius, PolarResolution, RingSize, 'nearest_neighbor')
    * 
    * Part 3:检测是否有缺陷
    scale_image_max (ImagePolar, ImageScaleMax)
    mean_image (ImageScaleMax, ImageMean, SmoothX, 3)
    *原图区域-均值后的区域  =有差异的区域
    dyn_threshold (ImageScaleMax, ImageMean, Regions1, 55, 'not_equal')
    connection (Regions1, Connection)
    select_shape (Connection, SelectedRegions, 'height', 'and', 9, 99999)
    * ignore noise regions
    closing_rectangle1 (SelectedRegions, RegionClosing1, 10, 20)
    union1 (RegionClosing1, RegionUnion)
    * re-transform defect regions for visualization
    polar_trans_region_inv (RegionUnion, XYTransRegion, Row, Column, 0, rad(360), Radius - RingSize, Radius, PolarResolution, RingSize, 1280, 1024, 'nearest_neighbor')
    * 
    * Part 4: Display results
    * display original image with results
    dev_set_window (WindowHandle1)
    dev_display (Image)
    dev_set_color ('blue')
    dev_display (RegionDifference)
    dev_set_color ('red')
    dev_display (XYTransRegion)
    * display polar transformed inspected region with results
    * The image and resulting region are rotated by 90 degrees
    * only for visualization purposes! (I.e. to fit better on the screen)
    * The rotation is NOT necessary for the detection algorithm.
    dev_set_window (WindowHandle)
    
    *旋转图像
    rotate_image (ImagePolar, ImageRotate, 90, 'constant')
    dev_display (ImageRotate)
    count_obj (RegionUnion, Number)
    if (Number > 0)
        mirror_region (RegionUnion, RegionMirror, 'diagonal', PolarResolution)
        mirror_region (RegionMirror, RegionMirror, 'row', PolarResolution)
        dev_display (RegionMirror)
        disp_message (WindowHandle1, 'Not OK', 'window', 12, 12, 'red', 'false')
    else
        disp_message (WindowHandle1, 'OK', 'window', 12, 12, 'forest green', 'false')
    endif
    if (Index < 16)
        disp_continue_message (WindowHandle1, 'black', 'true')
        stop ()
    endif
endfor
* Reset system parameters
set_system ('store_empty_region', StoreEmptyRegion)

案例四

https://blog.csdn.net/cashmood/article/details/104709546

ead_image (Image, '1.png') 
rgb3_to_gray (Image, Image, Image, ImageGray) 
dev_open_window_fit_image (ImageGray, 0, 0, -1, -1, WindowHandle) 
dev_set_draw ('margin') 
dev_set_line_width (3) 
dev_set_draw ('margin') 
* dev_set_draw ('fill') 
get_image_size (ImageGray, Width, Height) 
binary_threshold (ImageGray, Region, 'max_separability', 'dark', UsedThreshold) 
connection (Region, ConnectedRegions) 
select_shape_std (ConnectedRegions, SelectedRegions, 'max_area', 70) 

* 计算最外测圆的直径
smallest_circle (SelectedRegions, Row2, Column2, Radius) 
gen_circle (Circle, Row2, Column2, Radius) 
reduce_domain (ImageGray, Circle, ImageReduced2) 
gray_closing_rect (ImageReduced2, ImageClosing1, 10, 4) 
*极坐标转换  
polar_trans_image_ext (ImageClosing1, PolarTransImage1, Row2, Column2, 0, 6.28319, Radius-100, Radius-10, 6.28*Radius, 90, 'nearest_neighbor') 


mean_image (PolarTransImage1, ImageMean1, 500, 2) 
dyn_threshold (PolarTransImage1, ImageMean1, RegionDynThresh1, 7, 'dark') 
connection (RegionDynThresh1, ConnectedRegions1) 
select_shape (ConnectedRegions1, SelectedRegions1, 'area', 'and',100, 9000000) 
union1 (SelectedRegions1, RegionUnion) 
closing_rectangle1 (RegionUnion, RegionClosing1, 10, 20) 
connection (RegionClosing1, ConnectedRegions3) 

opening_rectangle1 (ConnectedRegions3, RegionOpening1, 10, 20) 

* 将区域还原到原图上
polar_trans_region_inv (RegionOpening1, XYTransRegion1, Row2, Column2, 0, 6.28319, Radius-100, Radius-10, 6.28*Radius, 90, Width, Height, 'nearest_neighbor') 
smallest_circle (XYTransRegion1, Row, Column, Radius1) 
gen_circle (Circle1, Row, Column, Radius1) 
dev_display (ImageGray) 
dev_display (Circle1)

五、Opencv :

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

int main() {
    Mat img = imread("rainbow.png");
    if (!img.data) {
        cout << "请检查图像文件名称是否正确" << endl;
        return -1;
    }

    Mat   img1, img2;
    Point center = Point(img.cols / 2, img.rows / 2); //极坐标在图像中的原点
    //正极坐标变换->方变圆
    warpPolar(img, img1, Size(512, 512), center, center.x, WARP_POLAR_LINEAR);

    //逆极坐标变换->圆变方
    warpPolar(img1,img2,Size(img.rows,img.cols),center,center.x,WARP_INVERSE_MAP);
    imshow("Original", img);
    imshow("Anti Polar Result", img2);
    imshow("Polar Result", img1);
    waitKey(0);
    return 0;
}

图像极坐标变换与反变换(Halcon + OpenCV)_将 环形虹膜图像的极坐标转换成矩形图像-CSDN博客 

//
// Created by zzl on 2020/12/20.
//

#include <iostream>
#include "opencv2/opencv.hpp"

using namespace std;
using namespace cv;

// 矩形图像转圆形
Mat Rectangle_to_Circle(const Mat &src, int Width);

Mat Circle_to_Rectangle(const Mat &src);

uchar getPixel(const Mat &src, double X, int X_up, int X_down, double Y, int Y_up, int Y_down);

int main(int argc, char **argv) {
    // 读入图像
    Mat src, dst;
    src = imread("/home/zzl/Blog/CoordinateTrans/Data/testimage4.jpg", 0);

    namedWindow("InputImages", WINDOW_NORMAL);
    imshow("InputImages", src);

    dst = Rectangle_to_Circle(src, 2 * src.rows);
    namedWindow("OutputImages", WINDOW_NORMAL);
    imshow("OutputImages", dst);

    Mat dst2;
    dst2 = Circle_to_Rectangle(dst);
    namedWindow("OutputImages2", WINDOW_FREERATIO);
    imshow("OutputImages2", dst2);



    cout << "Hello World" << endl;
    waitKey();
    return 0;
}

Mat Rectangle_to_Circle(const Mat &src, int Width) {

    int src_height = src.rows;
    int src_width = src.cols;

    Size dstSize = Size(2 * src_height, 2 * src_height);
    Mat dst = Mat::zeros(dstSize, CV_8UC1);
    // 极坐标变换
    double scale_r = 2 * src_height / (dstSize.width);
    double scale_theta = src_width / CV_2PI;
    Mat tmp = Mat::zeros(dst.size(), CV_64FC1);
    for (int i = 0; i < dstSize.height; ++i) {
        for (int j = 0; j < dstSize.width; ++j) {
            // 计算距离
            Point2d center(dstSize.width / 2, dstSize.width / 2);
            double distance = sqrt(pow(i - center.y, 2) + pow(j - center.x, 2));
//            tmp.at<double>(j, i) = distance;
            if (distance < dstSize.width / 2) {
                // 处于边界内部的点,可以提取像素
                // 坐标变换求对应方图上的点的坐标
                double Rec_Y = distance * scale_r; //Y 方向坐标
                if (Rec_Y < 0) {
                    Rec_Y = 0;
                }
                if (Rec_Y > dstSize.width / 2) {
                    Rec_Y = dstSize.width / 2;
                }
                double line_theta = atan2(i - center.y, j - center.x);
                if (line_theta < 0) {
                    line_theta += CV_2PI;
                }
                if (line_theta < 0) {
                    cout << "仍然小于0" << endl;
                }
                double Rec_X = line_theta * scale_theta;
                dst.at<uchar>(i, j) = src.at<uchar>((int) Rec_Y, (int) Rec_X);
            }
        }
    }
    // ---- 显示图像边界距离
//    normalize(tmp, tmp, 0, 1, NORM_MINMAX);
//    Mat display;
//    tmp.convertTo(display, CV_8UC1, 255.0);
//
//    namedWindow("Distance", WINDOW_NORMAL);
//    imshow("Distance", display);
//    waitKey();
//    circle(display, Point2d(Width / 2, Width / 2), Width / 2, 0, 10, LINE_8);
//    imshow("Distance", display);
//    waitKey();


    return dst;
}

Mat Circle_to_Rectangle(const Mat &src) {
    // 变换不同的图像大小有不同的效果
    Mat dst = Mat::zeros(Size((int) (src.cols * CV_PI) + 1, src.cols / 2 + 1), CV_8UC1);
//    Mat dst = Mat::zeros(Size(src.cols / 2 + 1, src.cols / 2 + 1), CV_8UC1);
    double scale_r = src.cols / (dst.rows);
    double scale_theta = 2 * CV_PI / dst.cols;
    for (int i = 0; i < dst.cols; ++i) {
        double theta = i * scale_theta;
        double sinTheta = sin(theta);
        double cosTheta = cos(theta);
        for (int j = 0; j < dst.rows; ++j) {
            double p = j * scale_r;
            double X = (src.rows / 2 + cosTheta * p);
            double Y = (src.cols / 2 + sinTheta * p);

            int X_up = ceil(X);
            int X_down = floor(X);
            int Y_up = ceil(Y);
            int Y_down = floor(Y);

            if (X > src.cols) {
                X = src.cols;
            }
            if (X < 0) {
                X = 0;
            }
            if (Y > src.rows) {
                Y = src.rows;
            }
            if (Y < 0) {
                Y = 0;
            }
            // 若使用插值算法需要取消注释
//            uchar tmp_Pixel = getPixel(src, X, X_up, X_down, Y, Y_up, Y_down);
//            dst.at<uchar>(j, i) = tmp_Pixel;
            dst.at<uchar>(j, i) = src.at<uchar>(Y, X); // 最近邻算法
        }

    }
    return dst;
}

uchar getPixel(const Mat &src, double X, int X_up, int X_down, double Y, int Y_up, int Y_down) {
    // 插值算法
    // X 为水平方向坐标 X_up、X_down分别为向上向下取整后的值 Y同理
    double inter_val = 0;
    if (X_up == X_down && Y_up == Y_down) {
        inter_val = saturate_cast<uchar>(src.at<uchar>(Y_up, X_up));
    } else if (X_up == X_down) {
        inter_val = saturate_cast<uchar>((Y_up - Y) * src.at<uchar>(Y_up, X_up) +
                                         (Y - Y_down) * src.at<uchar>(Y_down, X_up));
    } else if (Y_up == Y_down) {
        inter_val = saturate_cast<uchar>((X_up - X) * src.at<uchar>(Y_up, X_up) +
                                         (X - X_down) * src.at<uchar>(Y_up, X_down));
    } else {
        double Y_tmp = saturate_cast<uchar>((X_up - X) * src.at<uchar>(Y_down, X_up) +
                                        (X - X_down) * src.at<uchar>(Y_down, X_down));
        double X_tmp = saturate_cast<uchar>((X_up - X) * src.at<uchar>(Y_up, X_up) +
                                        (X - X_down) * src.at<uchar>(Y_up, X_down));
        inter_val = (Y_up - Y) * X_tmp + (Y - Y_down) * Y_tmp;
    }

    return (uchar) inter_val;
}



 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1694074.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

docker实战之搭建MYSQL8.0主从同步

目录 环境配置容器创建主服务器创建MYSQL容器新增my.cnf文件创建用户并授权 从服务器创建MYSQL容器新增my.cnf文件重启MYSQL容器配置主从同步 验证主从同步彩蛋 MySQL 主从同步&#xff08;Master-Slave Replication&#xff09;是一种常用的解决方案&#xff0c;它允许一个主服…

2024年蓝桥杯Web开发【大赛大纲】15届

一、 组别 Web应用开发分为&#xff1a;大学组和职业院校组。 每位选手只能申请参加其中一个组别的竞赛。各个组别单独评奖。 研究生和本科生只能报大学组。 其它高职高专院校可自行选择报任意组别。 二. 竞赛赛程 省赛时长&#xff1a;4小时。 决赛时长&#xff1a;4小…

【STM32CubeIDE】软件硬件SPI+六针OLED使用

前言 本文将介绍STM32 6针OLED的使用&#xff0c;分别使用软件和硬件两种SPI驱动方式&#xff0c;最终实现OLED显示TEST-ok字符和数字累加刷新显示 软件平台&#xff1a;STM32CubeIDEHAL库 硬件&#xff1a;STM32F103ZET6(正点原子战舰V3)六针OLED 题外话&#xff1a; 最…

【Apache Doris】BE宕机问题排查指南

【Apache Doris】BE宕机问题排查指南 背景BE宕机分类如何判断是BE进程是Crash还是OOMBE Crash 后如何排查BE OOM 后如何分析Cache 没及时释放导致BE OOM&#xff08;2.0.3-rc04&#xff09; 关于社区 作者&#xff5c;李渊渊 背景 在实际线上生产环境中&#xff0c;大家可能遇…

深入探索:移动云服务器的强大之处

文章目录 一 什么是移动云二 移动云服务器的使用三 移动云服务器的优点四 在移动云上部署node.js项目五 移动云服务器的应用场景六 移动云服务器的使用体验总结 一 什么是移动云 移动云是指用户可以通过移动设备访问云端的数据和应用&#xff0c;无需在本地设备上进行存储和处…

Notes for video: EDC-Con 2022/01 - EDC Conceptual Overview and Architecture

Eclipse Dataspace Connector 中文概念 Eclipse Dataspace Connector (EDC) 是一个开源项目&#xff0c;旨在提供一种标准化的方法来连接和共享数据空间中的数据。它是 Eclipse Foundation 下的一个项目&#xff0c;目标是促进数据共享和数据交换的互操作性。以下是 EDC 的一些…

【lambdastreammaven】

lambda 匿名函数 为了简化java中的匿名内部类 事件监听 写一个类 实现 ActionListener 接口 (外部类) | | 内部类 类在其他地方用不到, 索性就把这个类定义在类的内部使用 好处: 1.内部可以使用外部类的成员 …

弹性盒子布局,flex布局

弹性盒子布局&#xff08;Flexbox&#xff09;是CSS3引入的一种新的布局模式&#xff0c;它提供了一种更加有效的方式来设计、布局和对齐容器中的项目&#xff0c;即使容器的大小动态改变或者项目的数量未知。 弹性盒子布局的主要特点是能够轻松地在不同的屏幕大小和设备上实现…

【小程序 按钮 表单 】

按钮 代码演示 xxx.wxml <view class"boss" hover-class"box"hover-start-time"2000"hover-stay-time"5000">测试文本<view hover-stop-propagation"true">子集</view><view>子集2</view>…

Vulhub——adminer

文章目录 一、CVE-2021-21311&#xff08;SSRF&#xff09;二、CVE-2021-43008&#xff08;远程文件读取&#xff09; 一、CVE-2021-21311&#xff08;SSRF&#xff09; Adminer是一个PHP编写的开源数据库管理工具&#xff0c;支持MySQL、MariaDB、PostgreSQL、SQLite、MS SQL…

lenovo联想小新Pro 16 APH8 2023款(83AR)笔记本电脑原装出厂Windows11系统镜像安装包下载

恢复出厂开箱状态OEM预装win11系统&#xff0c;自带恢复重置初始化还原功能 下载链接&#xff1a;https://pan.baidu.com/s/1n_mPM4ZrLPrmXpCTukuyCQ?pwdmnwj 提取码&#xff1a;mnwj 联想原装系统自带所有驱动、出厂主题壁纸、系统属性联机支持标志、Office办公软件、联想…

网络空间安全数学基础·整除与同余

主要内容&#xff1a; 整除的基本概念&#xff08;掌握&#xff09; 素数&#xff08;掌握&#xff09; 同余的概念&#xff08;掌握&#xff09; 1.1整除 定义&#xff1a;设a&#xff0c;b是任意两个整数&#xff0c;其中b≠0&#xff0c;如果存在一个整数q&#xff0c;使 …

线性表(从数据结构的三要素出发)

文章目录 逻辑结构存储结构顺序存储链式存储单链表双链表循环单链表循环双链表静态链表 数据的操作顺序结构链式结构单链表双链表 逻辑结构 线性表是具有相同数据类型的 n ( n ≥ 0 ) n(n≥0) n(n≥0)个数据元素的有限序列&#xff0c;其中 n n n为表长&#xff0c;当 n 0 n0…

Elasticsearch集群搭建学习

Elasticsearch集群聚合、集群搭建 RestClient查询所有高亮算分控制 数据聚合DSL实现Bucket聚合DSL实现Metrics聚合RestAPI实现聚合 拼音分词器如何使用拼音分词器&#xff1f;如何自定义分词器&#xff1f;拼音分词器注意事项&#xff1f; 自动补全数据同步集群搭建ES集群结构创…

C++—— set、map、multiset、multimap的介绍及使用

目录 关联式容器 关联式容器的特点和使用场景 树形结构与哈希结构 树形结构 哈希结构 键值对 set set的介绍 set的定义方式 set的使用 multiset map map的介绍 map的定义方式 map的使用 multimap 关联式容器 C标准模板库&#xff08;STL&#xff09;中的关联…

vue17:v-bind对css样式的控制增强

代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><styl…

软考之零碎片段记录(三十一)+复习巩固(错题整理,知识点总结,易错题)

1. 奇偶校验 只能检测一位数的错误。但无法纠正错误。若有奇数个数据位出错&#xff0c;可检测。有局限性。 2. 深度与广度优先遍历 参考题【【数据结构自用】1.图深度优先遍历2.找有向图中的强连通分量数目3.给出图的任意两个拓扑序列】https://www.bilibili.com/video/BV…

下雨!大水蚁引发的水文!看比赛咯,曼联VS曼城——早读(逆天打工人爬取热门微信文章解读)

唠唠嗑 水一水 引言Python 代码结尾 引言 今天星期六 大小周 一个等了很久的双休 昨天晚上真的是吓到我了 漫天的小飞虫 我一开始还以为是一两只 没想到那些小飞虫 从阳台不断飞进来 在山卡拉下面租房子 也是太恐怖了 来个特写 他们也就一个晚上的时间 成虫 天气合适 长翅…

Unity-Sprite Atlas+UGUI系统的运行原理

每日一句&#xff1a;别听世俗耳语&#xff0c;看自己的风景就好 目录 SA的原理&#xff1a; SA的优点&#xff1a; SA的缺点&#xff1a; DrawCall是什么&#xff1f; 批处理是什么&#xff1f; 我们先了解一下UGUI系统的运行原理吧&#xff01; 提到图集优化&#xff0…

【面试干货】数据库乐观锁,悲观锁的区别,怎么实现

【面试干货】数据库乐观锁&#xff0c;悲观锁的区别&#xff0c;怎么实现 1、乐观锁&#xff0c;悲观锁的区别2、总结 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 1、乐观锁&#xff0c;悲观锁的区别 悲观锁&#xff08;Pessimistic Lo…