目录
1.引言
2.std::any的存储分析
3._Any_big_RTTI与_Any_small_RTTI
4.std::any的构造函数
4.1.从std::any构造
4.2.可变参数模板构造函数
4.3.赋值构造与emplace函数
5.reset函数
6._Cast函数
7.make_any模版函数
8.std::any_cast函数
9.总结
1.引言
C++三剑客之std::any(一) : 使用详解_c++ std::any-CSDN博客
在前面详细的讲解了std::any的用法,std::any能够容纳任何可拷贝构造类型的数据,我们不禁会想它是怎么做到的呢?不同类型怎么做到巧妙的构造与转换的?多种构造函数如何实现?内部数据怎么储存?为什么分Big,Samll,trivial?
下面就以vs2019的std::any实现为例进行具体分析它的实现。
2.std::any的存储分析
std::any
将保存内容的内存形式分为了三种:_Small、_Trivial、_Big
划分规则代码为:
// size in pointers of std::function and std::any (roughly 3 pointers larger than std::string when building debug)
constexpr int _Small_object_num_ptrs = 6 + 16 / sizeof(void*); //64位系统: 8
//64位系统:_Any_trivial_space_size = 56
inline constexpr size_t _Any_trivial_space_size = (_Small_object_num_ptrs - 1) * sizeof(void*);
template <class _Ty>
inline constexpr bool _Any_is_trivial = alignof(_Ty) <= alignof(max_align_t)
&& is_trivially_copyable_v<_Ty> && sizeof(_Ty) <= _Any_trivial_space_size;
//64位系统:_Any_small_space_size = 48
inline constexpr size_t _Any_small_space_size = (_Small_object_num_ptrs - 2) * sizeof(void*);
template <class _Ty>
inline constexpr bool _Any_is_small = alignof(_Ty) <= alignof(max_align_t)
&& is_nothrow_move_constructible_v<_Ty> && sizeof(_Ty) <= _Any_small_space_size;
简单来说,满足 _Any_is_trivial
则为 Trivial 类型内存,满足 _Any_is_small
则为 Small 类型内存,其余的则为 Big 类型内存。
在 64 位系统下,划分规则可以解释为:
_Any_is_small
:类型长度小于等于 48 字节,内存对齐长度小于等于 8 字节,拥有具备 nothrow 声明的移动构造_Any_is_trivial
:类型长度小于等于 56 字节,内存对齐长度小于等于 8 字节,可平凡拷贝(基本数据类型、可平凡拷贝的聚合类型、以上类型的数组等)
下面是一些 _Any_is_small
和 _Any_is_trivial
判断的实测值:
struct Test1 {
char a[48];
};
struct Test2 {
char a[56];
};
struct Test3 {
Test3(Test3&& other)
{
memcpy(a, other.a, sizeof(Test3));
}
char a[48] {};
};
struct Test4 {
int& a;
};
struct Test5 {
virtual void a() = 0;
};
// 1
std::cout << std::_Any_is_small<char> << std::endl;
// 1
std::cout << std::_Any_is_small<int> << std::endl;
// 1
std::cout << std::_Any_is_small<double> << std::endl;
// 1
std::cout << std::_Any_is_small<Test1> << std::endl;
// 0, sizeof(Test2) > _Any_trivial_space_size
std::cout << std::_Any_is_small<Test2> << std::endl;
// 0, is_nothrow_move_constructible_v<_Ty> == false
std::cout << std::_Any_is_small<Test3> << std::endl;
// 1
std::cout << std::_Any_is_small<Test4> << std::endl;
// 0, is_nothrow_move_constructible_v<_Ty> == false
std::cout << std::_Any_is_small<Test5> << std::endl;
// 1
std::cout << std::_Any_is_trivial<char> << std::endl;
// 1
std::cout << std::_Any_is_trivial<int> << std::endl;
// 1
std::cout << std::_Any_is_trivial<double> << std::endl;
// 1
std::cout << std::_Any_is_trivial<Test1> << std::endl;
// 1
std::cout << std::_Any_is_trivial<Test2> << std::endl;
// 0, is_trivially_copyable_v == false
std::cout << std::_Any_is_trivial<Test3> << std::endl;
// 1
std::cout << std::_Any_is_trivial<Test4> << std::endl;
// 0, is_trivially_copyable_v == false
std::cout << std::_Any_is_trivial<Test5> << std::endl;
下面看看3中模型的数据存储结构:
//【1】
struct _Small_storage_t {
unsigned char _Data[_Any_small_space_size];
const _Any_small_RTTI* _RTTI;
};
static_assert(sizeof(_Small_storage_t) == _Any_trivial_space_size);
//【2】
struct _Big_storage_t {
// Pad so that _Ptr and _RTTI might share _TypeData's cache line
unsigned char _Padding[_Any_small_space_size - sizeof(void*)];
void* _Ptr;
const _Any_big_RTTI* _RTTI;
};
static_assert(sizeof(_Big_storage_t) == _Any_trivial_space_size);
//【3】
struct _Storage_t {
union {
unsigned char _TrivialData[_Any_trivial_space_size];
_Small_storage_t _SmallStorage;
_Big_storage_t _BigStorage;
};
uintptr_t _TypeData;
};
static_assert(sizeof(_Storage_t) == _Any_trivial_space_size + sizeof(void*));
static_assert(is_standard_layout_v<_Storage_t>);
union {
_Storage_t _Storage{};
max_align_t _Dummy;
};
我们可以看出_Storage_t本身由于一个联合体加上uintptr_t类型的_TypeData,在64位下uintptr_t就是unsigned long long,32位 unsigned int;
- _TypeData,这个实际是MSVC自己实现的,为了方便类型区分,借助了编译器内部类型信息。其什为:
_Storage._TypeData = reinterpret_cast<uintptr_t>(&typeid(_Decayed)) | static_cast<uintptr_t>(_Any_representation::_Trivial);
其中_Decayed为any要储存类型的模板退化类型,然后用typeid求出std::type_info全局静态类型再取地址,用reinterpret_cast强转,说来说去就是为了类型得到一个类似hash后的数值,这里只是地址,然后再|上_Any_representation枚举值,为了后面来区分类型。enum class _Any_representation : uintptr_t { _Trivial, _Big, _Small };
类型也比较容易,平凡类对应数值0,大类1,小类2- typeid返回type_info这个实现,实际上没有编译器内部实现也可以自己模板实现,模板类有个int型静态常量成员,对类型进行特化,最后也是取地址即可。
- 为什么_TypeData敢直接或上枚举,因为type_info的大小肯定大于3,两个type_info就算连续存储地址差肯定大于4,所以就算|2的话,从hash角度够用,也不会引发错误。
- _TrivialData[_Any_trivial_space_size];为char数组,其中
inline constexpr size_t _Any_trivial_space_size = (_Small_object_num_ptrs - 1) * sizeof(void*);
,编译器常量,只要求_Small_object_num_ptrs即可,_Small_object_num_ptrs它又是typeinfo文件中的编译期常量,constexpr int _Small_object_num_ptrs = 6 + 16 / sizeof(void*);
,对于64位也就是8,那么可以得出_Any_trivial_space_size为56,所以就是大小为char[56] - _Small_storage_t;是一个结构体,先是char数组且大小为_Any_small_space_size,这个也是编译期常理,
inline constexpr size_t _Any_small_space_size = (_Small_object_num_ptrs - 2) * sizeof(void*);
由上面可以就是6* 8 = 48;然后接一个_Any_small_RTTI指针,也是8,大小总共一起还是56 - _Big_storage_t;也是一个结构体,先是char数组且大小为_Any_small_space_size - sizeof(void*),这由上面可以就是48 - 8 = 40;再接一个8字节void*指针,最后接一个_Any_big_RTTI指针,也是8,大小总共一起还是56
综上可以看出:_Storage_t就是56+8 = 64字节大小,我们对any进行sizeof得到的结果也是64,印证分析,只不过具体一个any的对象是union中三个类型中的一个。
3._Any_big_RTTI与_Any_small_RTTI
Trivial 类型的内存是直接对拷的,对于这种内存无需再添加额外的生命周期指针。按照 Small 内存的定义,对于 Small 内存要添加 in_place 的销毁、拷贝、移动函数指针,而 Big 则需要保存堆内存的拷贝与销毁函数指针。源码中定义了 _Any_small_RTTI
和 _Any_big_RTTI
结构体,来存储这些指针:
struct _Any_big_RTTI { // Hand-rolled vtable for types that must be heap allocated in an any
using _Destroy_fn = void __CLRCALL_PURE_OR_CDECL(void*) _NOEXCEPT_FNPTR;
using _Copy_fn = void* __CLRCALL_PURE_OR_CDECL(const void*);
template <class _Ty>
static void __CLRCALL_PURE_OR_CDECL _Destroy_impl(void* const _Target) noexcept {
::delete static_cast<_Ty*>(_Target);
}
template <class _Ty>
_NODISCARD static void* __CLRCALL_PURE_OR_CDECL _Copy_impl(const void* const _Source) {
return ::new _Ty(*static_cast<const _Ty*>(_Source));
}
_Destroy_fn* _Destroy;
_Copy_fn* _Copy;
};
struct _Any_small_RTTI { // Hand-rolled vtable for nontrivial types that can be stored internally in an any
using _Destroy_fn = void __CLRCALL_PURE_OR_CDECL(void*) _NOEXCEPT_FNPTR;
using _Copy_fn = void __CLRCALL_PURE_OR_CDECL(void*, const void*);
using _Move_fn = void __CLRCALL_PURE_OR_CDECL(void*, void*) _NOEXCEPT_FNPTR;
template <class _Ty>
static void __CLRCALL_PURE_OR_CDECL _Destroy_impl(void* const _Target) noexcept {
_Destroy_in_place(*static_cast<_Ty*>(_Target));
}
template <class _Ty>
static void __CLRCALL_PURE_OR_CDECL _Copy_impl(void* const _Target, const void* const _Source) {
_Construct_in_place(*static_cast<_Ty*>(_Target), *static_cast<const _Ty*>(_Source));
}
template <class _Ty>
static void __CLRCALL_PURE_OR_CDECL _Move_impl(void* const _Target, void* const _Source) noexcept {
_Construct_in_place(*static_cast<_Ty*>(_Target), _STD move(*static_cast<_Ty*>(_Source)));
}
_Destroy_fn* _Destroy;
_Copy_fn* _Copy;
_Move_fn* _Move;
};
- 先看big,先用using重定义了两个函数指针类型_Destroy_fn和_Copy_fn,现在写法都流行用using而不是typedef,不过本身using功能也更强大一些,这个结构体成员是这两个函数指针。再定义两个静态的模板函数,用来创建和释放内存,都是调用系统命名空间::下new与delete,不过new实际调用的是一个拷贝构造的函数。其都是重新申请和释放的内存,只是得到的结果是指针而已。
- 再看small,结构基本等同big,只不过多了一个move的函数,支持移动语义。但仔细看它的三个静态成员函数,其并没有直接实现,而是利用了xutility文件中提供的标准模板函数_Construct_in_place与xmemory文件中的_Destroy_in_place标准模板函数。里面也没做什么,调用palcement new进构造函数调用与最后析构函数,也就是没有真正参与内存分配与释放,只是走了内存池那套流程,在已经分配好的内存上玩一圈。可以提供一下代码,其中_Construct_in_place还是可变模板参数的。
// FUNCTION TEMPLATE _Construct_in_place
template <class _Ty, class... _Types>
_CONSTEXPR20_DYNALLOC void _Construct_in_place(_Ty& _Obj, _Types&&... _Args) noexcept(
is_nothrow_constructible_v<_Ty, _Types...>) {
#ifdef __cpp_lib_constexpr_dynamic_alloc
if (_STD is_constant_evaluated()) {
_STD construct_at(_STD addressof(_Obj), _STD forward<_Types>(_Args)...);
} else
#endif // __cpp_lib_constexpr_dynamic_alloc
{
::new (_Voidify_iter(_STD addressof(_Obj))) _Ty(_STD forward<_Types>(_Args)...);
}
}
template <class _Ty>
_CONSTEXPR20_DYNALLOC void _Destroy_in_place(_Ty& _Obj) noexcept {
if constexpr (is_array_v<_Ty>) {
_Destroy_range(_Obj, _Obj + extent_v<_Ty>);
} else {
_Obj.~_Ty();
}
}
结构体中首先有对应的函数指针,另外,还提供了带模板的静态实现方法,实际用法是定义模板变量来保存 RTTI 结构体实例,实例中保存对应模板静态方法的指针,来为不同的类型提供 RTTI 功能:
template <class _Ty>
inline constexpr _Any_big_RTTI _Any_big_RTTI_obj = {
&_Any_big_RTTI::_Destroy_impl<_Ty>, &_Any_big_RTTI::_Copy_impl<_Ty>};
template <class _Ty>
inline constexpr _Any_small_RTTI _Any_small_RTTI_obj = {
&_Any_small_RTTI::_Destroy_impl<_Ty>, &_Any_small_RTTI::_Copy_impl<_Ty>, &_Any_small_RTTI::_Move_impl<_Ty>};
4.std::any的构造函数
4.1.从std::any构造
constexpr any() noexcept {}
any(const any& _That) {
_Storage._TypeData = _That._Storage._TypeData;
switch (_Rep()) {
case _Any_representation::_Small:
_Storage._SmallStorage._RTTI = _That._Storage._SmallStorage._RTTI;
_Storage._SmallStorage._RTTI->_Copy(&_Storage._SmallStorage._Data, &_That._Storage._SmallStorage._Data);
break;
case _Any_representation::_Big:
_Storage._BigStorage._RTTI = _That._Storage._BigStorage._RTTI;
_Storage._BigStorage._Ptr = _Storage._BigStorage._RTTI->_Copy(_That._Storage._BigStorage._Ptr);
break;
case _Any_representation::_Trivial:
default:
_CSTD memcpy(_Storage._TrivialData, _That._Storage._TrivialData, sizeof(_Storage._TrivialData));
break;
}
}
any(any&& _That) noexcept {
_Move_from(_That);
}
- 无参普通构造什么也没做
- 拷贝构造先拷贝_TypeData,再处理_Storage的联合体,也就是处理对应的类型_Rep()直接返回类型,其原理也很简单,
static_cast<_Any_representation>(_Storage._TypeData & _Rep_mask);
,_Rep_mask前面提过是3,就这么轻松把类型提取出来了。再接着就是RTTI指针的拷贝,对于真正的数据,small型栈上move操作,并不真正分配内存,big型是真正new一下内存拷贝构造,trivial更是简单,只需要直接拷贝内存就可以了。 - 移动语义拷贝构造,调用_Move_from,这个其实也简单,相比普通拷贝,small型调用move操作,big型拷贝内存指针,不重新申请内存,平凡性当然移动语义在这意义不大,直接还是内存拷贝。参见代码:
void _Move_from(any& _That) noexcept {
_Storage._TypeData = _That._Storage._TypeData;
switch (_Rep()) {
case _Any_representation::_Small:
_Storage._SmallStorage._RTTI = _That._Storage._SmallStorage._RTTI;
_Storage._SmallStorage._RTTI->_Move(&_Storage._SmallStorage._Data, &_That._Storage._SmallStorage._Data);
break;
case _Any_representation::_Big:
_Storage._BigStorage._RTTI = _That._Storage._BigStorage._RTTI;
_Storage._BigStorage._Ptr = _That._Storage._BigStorage._Ptr;
_That._Storage._TypeData = 0;
break;
case _Any_representation::_Trivial:
default:
_CSTD memcpy(_Storage._TrivialData, _That._Storage._TrivialData, sizeof(_Storage._TrivialData));
break;
}
}
4.2.可变参数模板构造函数
template <class _ValueType, enable_if_t<conjunction_v<negation<is_same<decay_t<_ValueType>, any>>,
is_copy_constructible<decay_t<_ValueType>>>,
int> = 0>
any& operator=(_ValueType&& _Value) {
// replace contained value with an object of type decay_t<_ValueType> initialized from _Value
*this = any{_STD forward<_ValueType>(_Value)};
return *this;
}
// Modifiers [any.modifiers]
template <class _ValueType, class... _Types,
enable_if_t<
conjunction_v<is_constructible<decay_t<_ValueType>, _Types...>, is_copy_constructible<decay_t<_ValueType>>>,
int> = 0>
decay_t<_ValueType>& emplace(_Types&&... _Args) {
// replace contained value with an object of type decay_t<_ValueType> initialized from _Args...
reset();
return _Emplace<decay_t<_ValueType>>(_STD forward<_Types>(_Args)...);
}
template <class _ValueType, class _Elem, class... _Types,
enable_if_t<conjunction_v<is_constructible<decay_t<_ValueType>, initializer_list<_Elem>&, _Types...>,
is_copy_constructible<decay_t<_ValueType>>>,
int> = 0>
decay_t<_ValueType>& emplace(initializer_list<_Elem> _Ilist, _Types&&... _Args) {
// replace contained value with an object of type decay_t<_ValueType> initialized from _Ilist and _Args...
reset();
return _Emplace<decay_t<_ValueType>>(_Ilist, _STD forward<_Types>(_Args)...);
}
- 一个参数的构造,enable_if_t在以前的文长说过了,主要为了借助SFINAE编译期判断,假设条件不通过,返回并没有定义type,否则返回int,并初始值为0,假如不能通过设为0为报错的,也就是匹配不成功,所有都失败,才会编译错误。就是能用一个参数进行构造,会走这里。
- 可变参数的构造,结构基本同前面分析。注意一下,这个是explicit显式的函数,第一个参数传占位符,后面根构造用的参数。
- 带初始化列表的构造,结构基本同前面分析。注意一下,这个是explicit显式的函数,第一个参数传占位符,第二个是初始化列表,后面跟具体的的参数。
三者的重点其实都落到了,_Emplace函数上了,我们看看具体实现
template <class _Decayed, class... _Types>
_Decayed& _Emplace(_Types&&... _Args) { // emplace construct _Decayed
if constexpr (_Any_is_trivial<_Decayed>) {
// using the _Trivial representation
auto& _Obj = reinterpret_cast<_Decayed&>(_Storage._TrivialData);
_Construct_in_place(_Obj, _STD forward<_Types>(_Args)...);
_Storage._TypeData =
reinterpret_cast<uintptr_t>(&typeid(_Decayed)) | static_cast<uintptr_t>(_Any_representation::_Trivial);
return _Obj;
} else if constexpr (_Any_is_small<_Decayed>) {
// using the _Small representation
auto& _Obj = reinterpret_cast<_Decayed&>(_Storage._SmallStorage._Data);
_Construct_in_place(_Obj, _STD forward<_Types>(_Args)...);
_Storage._SmallStorage._RTTI = &_Any_small_RTTI_obj<_Decayed>;
_Storage._TypeData =
reinterpret_cast<uintptr_t>(&typeid(_Decayed)) | static_cast<uintptr_t>(_Any_representation::_Small);
return _Obj;
} else {
// using the _Big representation
_Decayed* const _Ptr = ::new _Decayed(_STD forward<_Types>(_Args)...);
_Storage._BigStorage._Ptr = _Ptr;
_Storage._BigStorage._RTTI = &_Any_big_RTTI_obj<_Decayed>;
_Storage._TypeData =
reinterpret_cast<uintptr_t>(&typeid(_Decayed)) | static_cast<uintptr_t>(_Any_representation::_Big);
return *_Ptr;
}
}
可以看出_Emplace是any与真正的类型转换实现,这个模板第一个参数作了返回值,是无法推断的,必显示的传入,我们也看到都是显示传入T的退化类型的。有了前部分的分析,也是非常的容易了,先判断是trivial还是small还是big类型,方法已经说过。
- trivial:这种来说,真接内存强转,然后_Construct_in_place实质是STL的方法,就是调用placement new进行构造的,再设置_TypeData,这些都是容易处理的。
- small这里和trivial没有本质上的区别,只是内存变成48字节内了,然后多了一个RTTI指针获取,构造函数也真正起作用,不像tirival
- big类型更是容易,直接new内存进行显示的T(args...)构造,模板参数包展开,他们都是万能引用与完美转发,然后将申请并初始化的内存地址交给了_Storage._BigStorage._Ptr
总结:small型与trivial型都是没有直接进行堆内存再申请,,在any已经有的64个字节内强转操作,不同的small会真正处理调用构造函数,big型来说是进行再次堆内存申请,然后存其指针。
4.3.赋值构造与emplace函数
这个没什么好说的,实际还是调用前面说的拷贝构造与带参的构造,包装过一层而已。
// Assignment [any.assign]
any& operator=(const any& _That) {
*this = any{_That};
return *this;
}
any& operator=(any&& _That) noexcept {
reset();
_Move_from(_That);
return *this;
}
template <class _ValueType, enable_if_t<conjunction_v<negation<is_same<decay_t<_ValueType>, any>>,
is_copy_constructible<decay_t<_ValueType>>>,
int> = 0>
any& operator=(_ValueType&& _Value) {
// replace contained value with an object of type decay_t<_ValueType> initialized from _Value
*this = any{_STD forward<_ValueType>(_Value)};
return *this;
}
// Modifiers [any.modifiers]
template <class _ValueType, class... _Types,
enable_if_t<
conjunction_v<is_constructible<decay_t<_ValueType>, _Types...>, is_copy_constructible<decay_t<_ValueType>>>,
int> = 0>
decay_t<_ValueType>& emplace(_Types&&... _Args) {
// replace contained value with an object of type decay_t<_ValueType> initialized from _Args...
reset();
return _Emplace<decay_t<_ValueType>>(_STD forward<_Types>(_Args)...);
}
template <class _ValueType, class _Elem, class... _Types,
enable_if_t<conjunction_v<is_constructible<decay_t<_ValueType>, initializer_list<_Elem>&, _Types...>,
is_copy_constructible<decay_t<_ValueType>>>,
int> = 0>
decay_t<_ValueType>& emplace(initializer_list<_Elem> _Ilist, _Types&&... _Args) {
// replace contained value with an object of type decay_t<_ValueType> initialized from _Ilist and _Args...
reset();
return _Emplace<decay_t<_ValueType>>(_Ilist, _STD forward<_Types>(_Args)...);
}
从中可以看出,operator=、emplace内部都是调用的_Emplace。
5.reset函数
void reset() noexcept { // transition to the empty state
switch (_Rep()) {
case _Any_representation::_Small:
_Storage._SmallStorage._RTTI->_Destroy(&_Storage._SmallStorage._Data);
break;
case _Any_representation::_Big:
_Storage._BigStorage._RTTI->_Destroy(_Storage._BigStorage._Ptr);
break;
case _Any_representation::_Trivial:
default:
break;
}
_Storage._TypeData = 0;
}
reset就是调用析构和释放内存的,对于small来说,不用释放内存,内部直接调用析构,对于big来说,其实际是delete,即析构还释放内存,对trivial来说,不用处理内存相关,最后都将_TypeData清零。
6._Cast函数
template <class _Decayed>
_NODISCARD const _Decayed* _Cast() const noexcept {
// if *this contains a value of type _Decayed, return a pointer to it
const type_info* const _Info = _TypeInfo();
if (!_Info || *_Info != typeid(_Decayed)) {
return nullptr;
}
if constexpr (_Any_is_trivial<_Decayed>) {
// get a pointer to the contained _Trivial value of type _Decayed
return reinterpret_cast<const _Decayed*>(&_Storage._TrivialData);
} else if constexpr (_Any_is_small<_Decayed>) {
// get a pointer to the contained _Small value of type _Decayed
return reinterpret_cast<const _Decayed*>(&_Storage._SmallStorage._Data);
} else {
// get a pointer to the contained _Big value of type _Decayed
return static_cast<const _Decayed*>(_Storage._BigStorage._Ptr);
}
}
template <class _Decayed>
_NODISCARD _Decayed* _Cast() noexcept { // if *this contains a value of type _Decayed, return a pointer to it
return const_cast<_Decayed*>(static_cast<const any*>(this)->_Cast<_Decayed>());
}
_Cast是类型转换,提供const与非const两个版本,也是内存地址强转,big用的_Storage._BigStorage._Ptr,samll用&_Storage._SmallStorage._Data,当然trivial用的是&_Storage._TrivialData。
7.make_any模版函数
template <class _ValueType, class... _Types>
_NODISCARD any make_any(_Types&&... _Args) { // construct an any containing a _ValueType initialized with _Args...
return any{in_place_type<_ValueType>, _STD forward<_Types>(_Args)...};
}
template <class _ValueType, class _Elem, class... _Types>
_NODISCARD any make_any(initializer_list<_Elem> _Ilist, _Types&&... _Args) {
// construct an any containing a _ValueType initialized with _Ilist and _Args...
return any{in_place_type<_ValueType>, _Ilist, _STD forward<_Types>(_Args)...};
}
就是将参数透传到 std::any
的初始化列表构造并执行。
8.std::any_cast函数
template <class _ValueType>
_NODISCARD const _ValueType* any_cast(const any* const _Any) noexcept {
// retrieve a pointer to the _ValueType contained in _Any, or null
static_assert(!is_void_v<_ValueType>, "std::any cannot contain void.");
if constexpr (is_function_v<_ValueType> || is_array_v<_ValueType>) {
return nullptr;
} else {
if (!_Any) {
return nullptr;
}
return _Any->_Cast<_Remove_cvref_t<_ValueType>>();
}
}
template <class _ValueType>
_NODISCARD _ValueType* any_cast(any* const _Any) noexcept {
// retrieve a pointer to the _ValueType contained in _Any, or null
static_assert(!is_void_v<_ValueType>, "std::any cannot contain void.");
if constexpr (is_function_v<_ValueType> || is_array_v<_ValueType>) {
return nullptr;
} else {
if (!_Any) {
return nullptr;
}
return _Any->_Cast<_Remove_cvref_t<_ValueType>>();
}
}
template <class _Ty>
_NODISCARD remove_cv_t<_Ty> any_cast(const any& _Any) {
static_assert(is_constructible_v<remove_cv_t<_Ty>, const _Remove_cvref_t<_Ty>&>,
"any_cast<T>(const any&) requires remove_cv_t<T> to be constructible from "
"const remove_cv_t<remove_reference_t<T>>&");
const auto _Ptr = _STD any_cast<_Remove_cvref_t<_Ty>>(&_Any);
if (!_Ptr) {
_Throw_bad_any_cast();
}
return static_cast<remove_cv_t<_Ty>>(*_Ptr);
}
template <class _Ty>
_NODISCARD remove_cv_t<_Ty> any_cast(any& _Any) {
static_assert(is_constructible_v<remove_cv_t<_Ty>, _Remove_cvref_t<_Ty>&>,
"any_cast<T>(any&) requires remove_cv_t<T> to be constructible from remove_cv_t<remove_reference_t<T>>&");
const auto _Ptr = _STD any_cast<_Remove_cvref_t<_Ty>>(&_Any);
if (!_Ptr) {
_Throw_bad_any_cast();
}
return static_cast<remove_cv_t<_Ty>>(*_Ptr);
}
template <class _Ty>
_NODISCARD remove_cv_t<_Ty> any_cast(any&& _Any) {
static_assert(is_constructible_v<remove_cv_t<_Ty>, _Remove_cvref_t<_Ty>>,
"any_cast<T>(any&&) requires remove_cv_t<T> to be constructible from remove_cv_t<remove_reference_t<T>>");
const auto _Ptr = _STD any_cast<_Remove_cvref_t<_Ty>>(&_Any);
if (!_Ptr) {
_Throw_bad_any_cast();
}
return static_cast<remove_cv_t<_Ty>>(_STD move(*_Ptr));
}
所有 std::any_cast
最终都会先取保存的 std::type_info
然后与目标类型相比较,失败则抛出 std::bad_any_cast
,否则则返回 value。这里要注意的是返回的类型会根据 std::any_cast
的入参产生变化:
const any* const
->const _ValueType*
any* const _Any
->_ValueType*
const any& _Any
->remove_cv_t<_Ty>
any& _Any
->remove_cv_t<_Ty>
any&& _Any
->remove_cv_t<_Ty>
总结起来就是入参的 std::any
为指针时,返回指针,否则返回 remove_cv_t<_Ty>
,所以使用时如果对应的是结构体 / 类,应该尽量获取指针或者引用来保持高效,避免内存拷贝降低性能(例子可以看前面的介绍)。
9.总结
到此我们已经全部分析完毕,任何做技术的都是要知其然,更好知其所以然。只要这样,才能把这些设计手法运用到我们平时的项目当中,只有你能熟练的运用了才是真正的掌握了。还是那句话,纸上得来终觉浅,绝知此事要躬行。
相关推荐阅读
std::is_trivially_copyable
std::is_move_constructible
C++内存分配策略