01 背包
有n
件物品和一个最多能背重量为w
的背包
第i
件物品的重量是weight[i]
,
得到的价值是value[i]
,
每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是
o
(
2
n
)
o(2^n)
o(2n),这里的n
表示物品数量。
所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!
举例:背包最大重量为4。
物品为:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
问背包能背的物品最大价值是多少?
二维dp数组01背包
动态规划五部曲
1. 确定dp数组以及下标的含义
dp[i][j]
表示从下标为[0-i]
的物品里任意取,放进容量为j
的背包,价值总和最大是多少。
2. 确定递推公式
不放物品i
:
由dp[i - 1][j]
推出,即背包容量为j
,里面不放物品i
的最大价值,此时dp[i][j]
就是dp[i - 1][j]
。(其实就是当物品i
的重量大于背包j
的重量时,物品i
无法放进背包中,所以被背包内的价值依然和前面相同。)
放物品i
:
由dp[i - 1][j - weight[i]]
推出,dp[i - 1][j - weight[i]]
为背包容量为j - weight[i]
的时候不放物品i
的最大价值,那么dp[i - 1][j - weight[i]] + value[i]
(物品i
的价值),就是背包放物品i
得到的最大价值
所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
3. dp数组如何初始化
首先从dp[i][j]
的定义出发,如果背包容量j
为0的话,即dp[i][0]
,无论是选取哪些物品,背包价值总和一定为0。如图:
在看其他情况。
状态转移方程 dp[i][j] = max(dp[i - 1][j]
, dp[i - 1][j - weight[i]] + value[i]);
可以看出i
是由 i-1
推导出来,那么i
为0的时候就一定要初始化。
dp[0][j]
,即:i
为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
那么很明显当 j < weight[0]
的时候,dp[0][j]
应该是 0,因为背包容量比编号0的物品重量还小。
当j >= weight[0]
时,dp[0][j]
应该是value[0]
,因为背包容量放足够放编号0物品。
代码初始化如下:
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
此时dp数组初始化情况如图所示:
dp[0][j]
和 dp[i][0]
都已经初始化了,那么其他下标应该初始化多少呢?
其实从递归公式: dp[i][j] = max(dp[i - 1][j]
, dp[i - 1][j - weight[i]] + value[i]);
可以看出dp[i][j]
是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。
初始-1,初始-2,初始100,都可以!
但只不过一开始就统一把dp数组统一初始为0,更方便一些。
如图:
最后初始化代码如下:
// 初始化 dp
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
4. 确定遍历顺序
在如下图中,可以看出,有两个遍历的维度:物品与背包重量
// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了。
5. 举例推导dp数组
来看一下对应的dp数组的数值,如图:
最终结果就是dp[2][4]
。
完整c++测试代码
void test_2_wei_bag_problem1() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagweight = 4;
// 二维数组
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
// 初始化
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
cout << dp[weight.size() - 1][bagweight] << endl;
}
int main() {
test_2_wei_bag_problem1();
}
代码随想录 | 01背包问题
一维dp数组(滚动数组)
1. 确定dp数组的定义
在一维dp数组中,dp[j]
表示:容量为j
的背包,所背的物品价值可以最大为dp[j]
。
2. 一维dp数组的递推公式
dp[j]
为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?
dp[j]
可以通过dp[j - weight[i]]
推导出来,dp[j - weight[i]]
表示容量为j - weight[i]
的背包所背的最大价值。
dp[j - weight[i]] + value[i]
表示 容量为 j
- 物品i
重量 的背包 加上 物品i
的价值。(也就是容量为j
的背包,放入物品i
了之后的价值即:dp[j]
)
此时dp[j]
有两个选择,一个是取自己dp[j]
相当于 二维dp数组中的dp[i-1][j]
,即不放物品i
,一个是取dp[j - weight[i]] + value[i]
,即放物品i
,指定是取最大的,毕竟是求最大价值,
所以递归公式为:
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
可以看出相对于二维dp数组的写法,就是把dp[i][j]
中i
的维度去掉了。
3. 一维dp数组如何初始化
dp[j]
表示:容量为j的背包,所背的物品价值可以最大为dp[j]
,那么dp[0]
就应该是0,因为背包容量为0所背的物品的最大价值就是0。
那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?
看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。
这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了。
那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。
4. 一维dp数组遍历顺序
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
5. 举例推导dp数组
一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:
完整C++测试代码
void test_1_wei_bag_problem() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagWeight = 4;
// 初始化
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
test_1_wei_bag_problem();
}
代码随想录 | 01背包问题(滚动数组)