Pandas CSV 文件
CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。
CSV 是一种通用的、相对简单的文件格式,被用户、商业和科学广泛应用。
Pandas 可以很方便的处理 CSV 文件,本文以 nba.csv 为例,你可以下载 nba.csv 或打开 nba.csv 查看。
import pandas as pd
df = pd.read_csv('nba.csv')
print(df.to_string())
运行结果如下:
to_string() 用于返回 DataFrame 类型的数据,如果不使用该函数,则输出结果为数据的前面 5 行和末尾 5 行,中间部分以 ... 代替。
import pandas as pd
df = pd.read_csv('nba.csv')
print(df)
运行结果如下:
我们也可以使用 to_csv() 方法将 DataFrame 存储为 csv 文件:
import pandas as pd
# 三个字段 name, site, age
nme = ["Google", "Runoob", "Taobao", "Wiki"]
st = ["www.google.com", "www.runoob.com", "www.taobao.com", "www.wikipedia.org"]
ag = [90, 40, 80, 98]
# 字典
dict = {'name': nme, 'site': st, 'age': ag}
df = pd.DataFrame(dict)
# 保存 dataframe
df.to_csv('site.csv')
执行成功后,我们打开 site.csv 文件,显示结果如下:
数据处理
head()
head( n ) 方法用于读取前面的 n 行,如果不填参数 n ,默认返回 5 行。
import pandas as pd
df = pd.read_csv('nba.csv')
print(df.head())
输出结果为:
tail()
tail( n ) 方法用于读取尾部的 n 行,如果不填参数 n ,默认返回 5 行,空行各个字段的值返回 NaN。
import pandas as pd
df = pd.read_csv('nba.csv')
print(df.tail())
输出结果为:
info()
info() 方法返回表格的一些基本信息:
import pandas as pd
df = pd.read_csv('nba.csv')
print(df.info())
输出结果为:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 458 entries, 0 to 457
Data columns (total 9 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Name 457 non-null object
1 Team 457 non-null object
2 Number 457 non-null float64
3 Position 457 non-null object
4 Age 457 non-null float64
5 Height 457 non-null object
6 Weight 457 non-null float64
7 College 373 non-null object
8 Salary 446 non-null float64
dtypes: float64(4), object(5)
memory usage: 32.3+ KB
None
Process finished with exit code 0
non-null 为非空数据,我们可以看到上面的信息中,总共 458 行,College 字段的空值最多。
参考:https://www.runoob.com/pandas/pandas-csv-file.html